

Consulting Earth Scientists

REMEDIAL ACTION PLAN 11-19 FRENCHMANS ROAD RANDWICK NSW 2031 PREPARED FOR FRENCHMANS LODGE PROPERTIES PTY LTD CES DOCUMENT REFERENCE: CES190901-FRE-AD

XX /*44 b	A Course
Written by:	A. Carras
Reviewed by:	M. Challoner/T. Goodbody
	(CEnvP:SCS)
Authorised by:	D. Lowe
	DE lave
Client:	Frenchmans Lodge Properties Pty
	Ltd
	C/O Centurion Project Management
	Pty Ltd
	Level 25, 88 Phillip Street
	Sydney 2000
Date:	13 May 2021

Suite 3, Level 1 • 55-65 Grandview Street • Pymble, NSW 2073 • Australia Telephone: 02 8569 2200 • Fax: 02 9983 0582 0 • ABN 67 151 524 757 © Consulting Earth Scientists Pty Ltd ALL RIGHTS RESERVED UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

Document Control

REMEDIAL ACTION PLAN 11-19 FRENCHMANS ROAD RANDWICK NSW 2031 PREPARED FOR FRENCHMANS LODGE PROPERTIES PTY LTD CES DOCUMENT REFERENCE: CES190901-FRE-AD

Hard	Digital	Recipient	Location
Сору	сору		
	1	Mr. Nick Winberg	Centurion Project Management Pty Ltd
	1	Ms. Julia Stockwell	Centurion Project Management Pty Ltd
	1	James Davis	Enviroview
	1	CES Library	CES Pty Ltd

Distribution Register

The Distribution Register identifies the recipients of issued copies of this report.

Revision Register

Revision Number	Revision Date	Description
0.0	13/05/2021	Remedial Action Plan 11-19 Frenchmans Road Randwick NSW 2031
1.0	31/05/2021	Remedial Action Plan 11-19 Frenchmans Road Randwick NSW 2031 Rev 1

The revision register tracks changes to the document.

The latest revision of this document supersedes all previous revisions. It is the responsibility of the recipient to ensure that superseded revisions of this document are removed from circulation.

Documents are only valid if they are signed, original documents issued by CES Pty Ltd. CES Pty Ltd does not accept any liability for actions taken based upon incomplete copies of this document.

REMEDIAL ACTION PLAN 11-19 FRENCHMANS ROAD RANDWICK NSW 2031 PREPARED FOR FRENCHMANS LODGE PROPERTIES PTY LTD

CES DOCUMENT REFERENCE: CES190901-FRE-AD

EXECUTIVE SUMMARY

Consulting Earth Scientists Pty Ltd (CES) was commissioned by Frenchmans Lodge Properties Pty Ltd (the Client) care of Centurion Group Pty Ltd to undertake specific intrusive investigations and prepare a Remedial Action Plan (RAP) for 11-19 Frenchmans Road, Randwick NSW 2031 (herein referred to as the site). The site is formally defined as Lot 3 and 4 in DP 13779 and Lot 10 DP 845575 and covers an area of approximately 0.27 hectares. It is currently zoned as Medium Density Residential. The site has a history of mixed residential and use as a hospital.

The site is proposed to be developed by the demolition of existing site structures and the construction of a new residential aged care facility with two levels of basement comprising workshop/storage rooms in the lowest level and carparking, staff amenities, resident facilities and facility services (laundry and waste rooms) in the upper basement level.

A Preliminary Site Investigation (PSI) (CES 2019a) with preliminary soil testing (three locations) and a Geotechnical Investigation (GI) (CES 2019b) were conducted at the Site in November 2019. The PSI found further investigation was necessary to target identified data gaps which included:

- *"The hydraulic elevator shaft sump, hydraulic pump, oil storage tank and stormwater system downgradient of the elevator sump pump discharge point;*
- The chemical storage area;
- *The grease trap; and*
- To provide site coverage of fill material in a further 4 locations.'

The further investigation was undertaken on 03 May 2021, targeting the gaps identified in the PSI report.

The key sources of contaminants identified at the site were filling of unknown origin, small scale plant, operational equipment and chemical storage. The contaminants of concern (identified in the revised conceptual model) include heavy metals, TPH, BTEX, PAHs, and OCPs. The main contaminants were identified in shallow fill from boreholes BH4, BH6, BH8, and BH9 to BH11. The laboratory detected contaminant concentrations in excess of the Site's adopted HIL/HSLs (B and C) and/or EIL/ESLs (Public Open Space (coarse soils) in the soil samples collected from these locations. Statistical analysis of contaminant concentrations confirmed remediation and/or management of contaminants on Site is necessary.

The objective of remediation is to provide sufficient engineering and management controls to make the site suitable (with respect to soil contamination) for the proposed development, to ensure protection of human health and the environment during and post remediation works, and to manage soils in a cost-effective manner. In absence of a site-specific assessment, remediation criteria include the HIL B/HSL D, HIL C/HSL D, and EIL/ESL (public open space (coarse soils)).

With reference to State Environmental Planning Policy No 55—Remediation of Land, the Client, via its appointed certified contaminated land consultant, should notify the Council 30 days prior to commencement of the remediation works that the works are considered to be Category 2 remediation works.

Based on the remedial options assessment, the applicable and preferred remedial option for the COPCs is: Excavation, transport and disposal of impacted soils at the site to a suitably licensed facility due mainly to the excess cut/fill volumes of the proposed development and to avoid the site requiring an EMP following completion of the remediation works. It is noted that all remediation works at the site must be undertaken in accordance with a Construction Environment Management Plan to mitigate risks to workers and the public during earthworks at the site.

The procedure for excavation and offsite disposal is as follows:

- The remediation areas are set out onsite;
- The area is excavated to the identified depth, with soils either excavated directly to trucks for offsite disposal at a suitably licenced waste facility capable of accepting the waste, or stockpiled onsite for offsite disposal at a later date;
- Waste classification of the material for offsite disposal is required prior to offsite disposal. Preliminary Waste classification is presented in Table 6;
- Following excavation of the impacted soils, validation of the excavation should be carried out in accordance with Section 14.

Remediation works should be carried out in accordance with Sections 12 to 14. Upon completion of the identified remediation works, the site will be suitable for the proposed residential aged care development. Contingency measures for remediation, site management, and unexpected finds are detailed within this RAP.

REMEDIAL ACTION PLAN

11-19 FRENCHMANS ROAD RANDWICK NSW 2031

PREPARED FOR FRENCHMANS LODGE PROPERTIES PTY LTD

CES DOCUMENT REFERENCE: CES190901-FRE-AD

TABLE OF CONTENTS

EX	XECUTIVE SUMMARY	3
1	INTRODUCTION	11
2	OBJECTIVES AND SCOPE OF WORK	13
-	2.1 Objectives	13
-	2.2 SCOPE OF WORK	13
	2.3 REVISION OF THIS RAP	14
3	SITE INFORMATION AND SETTING	15
	3.1 SITE IDENTIFICATION	15
	3.2 SITE ZONING	15
	3.3 SITE DESCRIPTION	15
	3.4 PROPOSED DEVELOPMENT	15
	3.5 SURROUNDING LAND USE	16
	3.6 SENSITIVE RECEPTORS	16
	3.7 TOPOGRAPHY	17
	3.8 GEOLOGY	17
	3.9 Soils	17
	3.10 Hydrogeology	17
	3.11 SENSITIVE LOCAL ENVIRONMENTS	17
	3.12 ACID SULFATE SOILS	18
	3.13 METEOROLOGY	18
4	PRELIMINARY SITE INVESTIGATION (CES190901-FRE-AD)) 19
4	4.1 SITE HISTORY	19
4	4.2 SITE WALKOVER	19
2	4.3 INTRUSIVE INVESTIGATION	20
5	PRELIMINARY CONCEPTUAL MODEL	21
4	5.1 POTENTIAL SOURCES OF CONTAMINATION	21
4	5.2 CONTAMINANTS OF POTENTIAL CONCERN (COPC)	22
4	5.3 POTENTIAL PATHWAYS	22
4	5.4 Receptors	23
4	5.5 CONCEPTUAL MODEL – POLLUTANT LINKAGES	23
6	FIELDWORK PROGRAMME	25
(5.1 DATA QUALITY OBJECTIVES	25
	6.1.1 Step 1 – State the Problem	25
	6.1.2 Step 2 – Identify the Decision Statement	25
	6.1.3 Step 3 – Identify Inputs to the Decision	26

	6.1.4 Step 4 – Define the Study Boundaries	26
	6.1.5 Step 5 – Develop the Decision Rule	26 26
	6.1.6 Step 6 – Specify Limits on Decision Errors	20
	6.1.7 Step 7 – Optimise the Fieldwork Program Design	28
	6.2 INTRUSIVE INVESTIGATION	28
	6.2.1 Sample Density	28
	6.2.2 Sample Pattern	28
	6.2.3 Sample Depth	28
	6.2.4 Field Screening	28
	6.2.5 Sample Collection	28
	6.2.6 Decontamination Procedures	29
	6.2.7 Sample Containers	29
	6.2.8 Method of Sample Storage and Handling	29
	6.2.9 Sample Analysis Schedule	29
	6.2.10 Sample Logging	29
	6.2.11 QA/QC Documentation	29
7	SITE ASSESSMENT CRITERIA	31
	7.1 SOIL	31
	7.1.1 Human Health Assessment	31
	7.1.2 Asbestos	31
	7.1.3 Ecological Assessment	32
	7.2 WASTE CLASSIFICATION	32
8	QUALITY ASSURANCE / QUALITY CONTROL	33
	8.1 GENERAL FIELD QAQC PROCEDURES	33
	8.2 FIELD QA / QC RESULTS	34
	8.2.1 Blind Replicate Samples	34
	8.2.2 Split Samples	34
	8.2.3 Trip Blanks	35
	8.2.4 Trip Spikes	35
	8.3 LABORATORY QA/QC ASSESSMENT	35
	8.4 QAQC ASSESSMENT SUMMARY	35
9	RESULTS	36
	9.1 ENCOUNTERED SUBSURFACE CONDITIONS	36
	9.2 FIELD SCREENING	36
	9.3 LABORATORY ANALYSIS	37
	9.3.1 Human Health Screening Assessment	37
	9.3.2 Ecological Assessment	37
	9.3.3 Waste Classification	38
1	DISCUSSION OF ADDITIONAL INTRUSIVE INVESTIGATION	38
	10.1 HUMAN HEALTH RISK ASSESSMENT	38
	10.2 ECOLOGICAL RISK ASSESSMENT	38

10.3 10.4	PRELIMINARY WASTE CLASSIFICATION RECOMMENDATIONS	39 40
11	REMEDIAL ACTION PLAN	41
11.1	SEPP 55 REMEDIATION CATEGORY	41
11.2	NOTIFICATIONS AND PERMIT REQUIREMENTS	42
12	REMEDIATION OPTIONS AND STRATEGY	43
12.1	REMEDIATION GOAL	43
12.2	REMEDIATION END POINT	43
12.3	REMEDIATION CRITERIA	43
12.4	EXTENT OF REMEDIATION REQUIRED	43
12.5		44
	5.1 Treatment Technologies	45
	5.2 Removal to Landfill	45
	5.3 Physical Barrier Systems (Capping)	45
	5.4 Institutional Controls	45
12.6	REMEDIAL OPTIONS ASSESSMENT	45
13	REMEDIATION METHOD	53
13.1	OFFSITE DISPOSAL	53
13.	1.1 Excavation volumes and contamination extent	53
13.2	REMEDIATION SEQUENCING	54
13.3	PRELIMINARIES	55
13.4	SITE PREPARATION	55
13.5	CONTROLLED EXCAVATION	57
13.6	SOIL STOCKPILE MANAGEMENT	57
	6.1 Stockpile Segregation Process	58
	6.2 Stockpile Waste Classification	58
	6.3 Stockpile Assessment and Sampling Methodology	59
13.	6.4 General guidance for field screening stockpiles of volume up to 200m ³	59
<i>13</i> .	6.5 General guidance for field screening stockpiles of volume greater than $200m^3$:	61
<i>13</i> .	6.6 Laboratory Analytical Frequency	61
13.7	INSITU WASTE CLASSIFICATION	62
13.8	CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN REQUIREMENTS	63
13.9	WASTE MATERIALS TRACKING	63
13.10	Onsite Materials tracking Soil Off-Site Disposal	64
13.11 13.12		64 64
13.12	SITE REINSTATEMENT	65
13.13	REMEDIAL CONTINGENCIES	65
13.14	CONTINGENCIES CONTINGENCY REMEDIATION METHOD - ONSITE ENCAPSULATION	67
14	VALIDATION PLAN	69
14.1	VALIDATION SAMPLING	69
14.	1.1 Excavated Areas	69
14.	1.2 Fill Stockpile Areas	70

14.1.3 Waste Classification	70
14.1.4 Imported VENM	70
14.1.5 Imported ENM	71
14.1.6 Imported Material Validation	71
14.1.7 Method of Sample Collection	72
14.1.8 Sample Collection	72
14.1.9 Decontamination Procedures	72
14.1.10 Sampling Equipment	72
14.1.11 Sample Containers	72
14.1.12 Method of Sample Storage and Handling	72
14.1.13 Sample Logging	72
14.1.14 QA / QC Documentation	73
14.2 FIELD SCREENING	73
14.3 QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM (QA/QC)	74
14.3.1 Field QA/QC Programme	74
14.3.1.1 Environmental Samples	74
14.3.1.2 Blind Replicate Samples	74
14.3.1.3 Split Samples	74
14.3.1.4 Trip Spike	75
14.3.1.5 Trip Blank	75
14.4 VALIDATION REPORTING	75
15 WORK HEALTH AND SAFETY	77
16 SITE MANAGEMENT PLAN	78
16.1 HOURS OF OPERATION	78
16.2 SITE SIGNAGE AND CONTACTS	78
16.3 SITE ACCESS	78
16.4 SEDIMENT AND RUNOFF MANAGEMENT	78
16.5 AIR QUALITY	79
16.5.1 Dust Control	79
16.5.2 Odour	80
16.5.3 Potential Vapour Exposure in Subsurface Areas	80
16.5.4 Noise	80
16.6 ASBESTOS MANAGEMENT	81
17 SUMMARY AND RECOMMENDATIONS	83
18 LIMITATIONS OF THIS REPORT	84
19 REFERENCES	85

LIST OF FIGURES

- Figure 1: Site Location Plan
- Figure 2: Site Layout Plan
- Figure 3: Assessment Criteria Exceedance Plan
- Figure 4: Remedial Extent Plan
- Figure 5: Waste Classification Plan
- Figure 6: Site Assessment Criteria Plan
- Figure 7: Example of stockpile partitioning (in text)

LIST OF TABLES

- Table 1: Geographical Extent of Site
- Table 2: Surrounding Land Use
- Table 3: Historical Aerial Photograph Review
- Table 4: QA/QC Data Acceptance Criteria
- Table 5: Inferred Subsurface Model
- Table 6: Preliminary Waste Classification
- Table 7: Applicable Legislation / Regulation
- Table 8: Remedial Options Assessment
- Table 9: Excavation Volumes and Contamination Extent
- Table 10: Site Preparation
- Table 11: Minimum number of samples for stockpile 200 m3 or less (minimum of 3 then 1:25m3)
- Table 12: Minimum number of samples for stockpile soil volumes greater than 200 m3
- Table 13: Remedial Contingencies
- Table 14: Summary of Analysis results and Comparison to Tier 1 Screening Criteria
- Table 15: Asbestos Laboratory Analytical Results
- Table 16: Soil QAQC Assessment Results
- Table 17: Soil QA/QC Results (Blanks and Trip Spikes)
- Table 18: EIL Soil Physiochemical Properties
- Table 19: Preliminary Waste Classification Results
- Table 20: Site Remediation Criteria

LIST OF ABBREVIATIONS

ACM	Asbestos Containing Material
AHD	Australian Height Datum
ASS	Acid Sulfate Soil
BTEX	Benzene, Toluene, Ethylbenzene and Total Xylenes
CES	Consulting Earth Scientists Pty Ltd
CLM	Contaminated Land Management
COPC	Contaminants of Potential Concern
DECCW	Department of Environment and Climate Change and Water
DLWC	Department of Land and Water Conservation
EMP	Environmental Management Plan
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
km	Kilometre
LGA	Local Government Area
LPI	Land and Property Information Division
LEP	Local Environmental Plan
m	Metre
mbgl	metres Below Ground Level
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticide
PAH	Polycyclic Aromatic Hydrocarbon
PSI	Preliminary Site Investigation
PSP	Project Safety Plan
RAP	Redial Action Plan
TRH	Total Recoverable Hydrocarbons
UST	Underground Storage Tank
VOC	Volatile Organic Compounds

REMEDIAL ACTION PLAN

11-19 FRENCHMANS ROAD RANDWICK NSW 2031

PREPARED FOR FRENCHMANS LODGE PROPERTIES PTY LTD

CES DOCUMENT REFERENCE: CES190901-FRE-AB

1 INTRODUCTION

Consulting Earth Scientists Pty Ltd (CES) was commissioned by Frenchmans Lodge Properties Pty Ltd (the Client) care of Centurion Group Pty Ltd to undertake specific intrusive investigations and prepare a Remedial Action Plan (RAP) for 11-19 Frenchmans Road, Randwick NSW 2031 (herein referred to as the site). A site location plan is presented as Figure 1.

The site is proposed to be developed by the demolition of existing site structures and the construction of a new residential aged care facility with two levels of basement comprising workshop/storage rooms in the lowest level and carparking, staff amenities, resident facilities and facility services (laundry and waste rooms) in the upper basement level. The lower basement level is limited to approximately one third of the building footprint, in the south east. Above grade levels comprise residential and dining facilities and communal areas.

Plans of the proposed development, *Proposed Residential Care Facility 11-19 Frenchmans Road Randwick NSW* (Boffa Robertson Group, dated 30 September 2020) are presented as Appendix A.

A landscape plan *Summitcare Randwick Landscape Development Application Issue* C (Arcadia, dated August 2020) indicates that areas outside of the basement excavation footprint are to be landscaped, in addition to some areas overlying the basement excavation. A landscape plan is included in Appendix A.

A Preliminary Site Investigation (PSI) was previously prepared by CES:

• CES (2019) *Preliminary Site Investigation, 11-19 Frenchmans Road, Randwick NSW 2031*, (CES document reference: CES190901-FRE-AB, dated 25 November 2019).

The PSI (CES 2019) recommended that there was insufficient information to determine that the site is suitable for the proposed development, or if remediation/management of contamination is required. Further investigation to resolve the assessment was recommended, as presented below:

"Targeted investigation of the following:

- The hydraulic elevator shaft sump, hydraulic pump, oil storage tank and stormwater system downgradient of the elevator sump pump discharge point;
- The chemical storage area;
- The grease trap; and

• To provide site coverage of fill material in a further 4 locations."

Further investigations were undertaken on 03 May 2021, with the results presented in Section 9. The investigations identified contaminant concentrations in excess of the adopted Tier 1 screening criteria for both human health and ecological risk assessment. To address the identified risks, this RAP was prepared.

This RAP has been prepared in general accordance with the requirements specified for a Remedial Action Plan with reference to the following guidelines:

- NSW Environment Protection Authority (EPA) 2020, *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (NSW EPA);
- NSW EPA 2014, Waste Classification Guidelines, Part 1: Classifying Waste;
- NSW EPA 2017, Contaminated Land Management, Guidelines for the NSW Auditor Scheme (3rd Edition);
- NSW EPA 1995, Contaminated Sites: Sampling Design Guidelines;
- NSW EPA 2004. Chemical Control Order in Relation to Scheduled Chemical Wastes; and
- National Environment Protection Council (NEPC) 1999, *National Environment Protection* (*Assessment of Site Contamination*) *Measure* (*NEPM*), as amended 2013 (ASC NEPM (NEPC 2013));

2 OBJECTIVES AND SCOPE OF WORK

2.1 OBJECTIVES

The principal objectives of the works are as follows:

- Undertake the recommended investigations presented in the PSI (CES 2019);
- Characterise the contamination status of the site and determine the site's suitability for the proposed development;
- Determine preliminary waste classification;
- Determine the extent of remediation required to make the site suitable for the proposed development;
- Set remediation goals which will assist in making the site suitable for the proposed residential use and will pose no unacceptable risk to human health or to the environment;
- Document all procedures and plans to be implemented to reduce risks to acceptable levels for the proposed high density aged care residential land use; and
- Establish the environmental safeguards required to complete the remediation in an environmentally acceptable manner.

2.2 SCOPE OF WORK

To achieve the objectives the following scope of work was adopted:

- Review the PSI report (CES 2019) and other relevant updated information including updated plans of the proposed development;
- Intrusive investigation of eight locations in a targeting investigation as recommended in the PSI report;
- Assessment of the site environmental data against generic Tier 1 Screening Criteria for human health and ecological risk assessment;
- Preparation of detailed Conceptual Site Model (CSM) characterising the contamination sources, pathways and (current and future) receptors;
- Determination of the extent of remediation required to make the site suitable in the context of the proposed development design;
- Evaluation of remediation options and rationale for the recommended remedial option including contingency plan, if the selected remedial strategy fails;
- Establishment of remediation goals, acceptance criteria and remediation endpoints;
- Determination of a Validation Plan for the remedial works;
- Preparation of outline Construction Site Management Plan requirements for stormwater, soil management, noise control, dust control, odour control and WHS plan for the operational phase of remediation;

- Determination of Contingency Plans to respond to site incidents that may affect site workers or surrounding site environments or communities;
- Identification of regulatory compliance requirements such as licences or approvals;
- Identification of a remediation timeline and schedule and hours of remedial work operations;
- Identification of appropriate personnel to contact during remediation;
- Identification of reporting requirements; and
- Identification of long-term site management plan requirements (if required).

This RAP and the information summarised within has been prepared on the basis of information provided in existing reports which should be read in conjunction with this RAP.

2.3 REVISION OF THIS RAP

This RAP is applicable for the duration of the construction works at the site. It may be necessary to revise and re-issue the RAP in order to reflect changes in project objectives; parties responsible for implementation of the RAP and development; unexpected finds; or changes to planning or statutory requirements.

If revision of the RAP is necessary, the following procedure should be followed:

- Review of the RAP by an experienced environmental consultant with reference to the changes requiring the revision. This review should also be done in consultation with the appointed Site Auditor, where necessary, the Local Council, particularly if the updated report varies or is inconsistent with any condition of consent imposed by Council which could require a 'Modification of Consent' application under the Environmental Planning and Assessment Act 1979 to be submitted to modify the consent;
- Update the RAP, including the document register revision number information, to address the requirements of the changed conditions;
- The updated RAP should be provided to the Site Auditor for review and endorsement prior to re-issue; and
- Re-issue the RAP and provide notice to the key stakeholders that previous versions have been superseded.

A copy of any revised RAP should be provided to the Key Stakeholders listed in the distribution register.

3 SITE INFORMATION AND SETTING

The site information presented below is based on a review of government and publicly available information sources.

3.1 SITE IDENTIFICATION

The site is located at 11-19 Frenchmans Road, Randwick NSW 2031, within the Randwick City Council Local Government Area (LGA) and comprises three lots, identified as Lot 3 and 4 in DP 13779 and Lot 10 DP 845575. The site covers an area of approximately 2,715 m² (0.27 hectares) and is irregular in shape, roughly forming a T-shape. The geographical extent of the site is presented in Table 1 and presented in Figure 2:

Corner/point of site	Eastings	Northings
Southeast corner of site	337826	6246594
Northeast corner of site	337821	6246617
Southwest corner of site	337755	6246570
Northwest corner of site	337750	6246599

Table 1: Geographical extent of the site (GDA 1994 MGA 56)

3.2 SITE ZONING

The site is zoned as R3 – Medium Density Residential in the Randwick Local Environmental Plan 2012.

3.3 SITE DESCRIPTION

The site is irregular in shape, roughly forming a T-shape, is located near the crest of a slope and gently slopes to the northeast (<3% slope). The site is occupied and is currently used an aged care facility and residential dwellings. The site surface, outside of building footprints, was observed to generally covered with hard standing, with the exception of small, landscaped areas in peripheral areas of the site.

3.4 PROPOSED DEVELOPMENT

The site is proposed to be developed by the demolition of existing site structures and the construction of a new residential aged care facility with two levels of basement comprising workshop/storage rooms in the lowest level and carparking, staff amenities, resident facilities, and facility services (laundry and waste rooms) in the upper basement level. The lower basement level is limited to approximately one third of the building footprint, in the south east. Above grade levels comprise residential and dining facilities and communal areas. Plans of the proposed development, *Proposed Residential Care Facility 11-19 Frenchmans Road Randwick NSW* prepared by Boffa Robertson Group dated 30 September 2020 are presented as Appendix A.

Setbacks from the site boundary of the proposed basements range from 0.67 m in the north west of the development to 7.64 m in the south of the development – that is to say the proposed basements extend over the vast majority of the site.

A landscape plan *Summitcare Randwick Landscape Development Application Issue* C prepared by Arcadia dated August 2020 indicates that areas outside of the basement excavation footprint are to be landscaped, in addition to areas overlying basement excavation. A landscape plan is included in Appendix A. Based on the landscaped design details, it is likely that the landscaped areas are intended to be used for recreation.

A copy of the *Bulk Earthworks Cut/Fill Plan* prepared by Henry & Hamas dated December 2019 Referenced 19826_DA_BE01 is provided in Appendix B, with excavations to between 69.45 to 72.25 m AHD required over the building footprint, which provides a predicted cut from existing levels of between 2 to 4 m in areas of single basement and up to 9 m in the area of the building with two levels of basement.

Outside of basement excavations, more minor cuts of between 0.25 to 0.75 are required, with fill of up to 1 m required in two localised areas of the north east of the site.

3.5 SURROUNDING LAND USE

The site is situated in an area of mixed residential land use, with residential land use adjacent to the site in all directions.

The site immediate surrounding land use is presented in Table 2.

Orientation	Description
North	Low and high density residential.
West	Low and high density residential.
South	Low and high density residential.
East	Low and high density residential. A service station is located approximately 100 m to the east of
	the site.

Table 2: Surrounding Land Use

3.6 SENSITIVE RECEPTORS

Sensitive receptors are presented in Table 3.

 Table 3: Sensitive Receptors Onsite and Nearby

Sensitive Receptor	Receptor Type	Orientation and Distance from Site
Current/Future Site Occupiers	Human Health –	0 m
Residential	High Density Residential	
Future Site Workers (Construction)	Human Health	0 m
Occupational Health		
Current/Future Nearby Site Occupiers	Human Health –	0 m
(offsite)	Low/High Density	
Residential,	Residential,	
Coogee Bay/Glebe Gully	Human Health –	1.8 km south east (Coogee Bay)
Recreational, Ecological	Recreational;	350 m south east (Glebe Gully)

Ecological – Marine water
Ecosystem (Coogee Bay)
Freshwater ecosystem
(Glebe Gully)

3.7 TOPOGRAPHY

The topography of the site is generally flat, with gentle slopes to the north east (<3% slope). The site is situated near the crest of a slope between 75 to 77 m AHD.

3.8 GEOLOGY

A review of the Sydney 1:100 000 Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney geological map indicates that the site is positioned on a boundary of geological units and is underlain by Triassic medium to coarse grained quartz sandstone, very minor shale and laminate lenses of the Hawkesbury Sandstone Group and Quaternary medium to fine-grained marine sand with podsols.

3.9 SOILS

A review of the Sydney 1:100 000 Sheet 9130 soil landscape map indicates that the site is underlain by Newport aeolian landscapes.

3.10 HYDROGEOLOGY

A review of the Hydrogeology Map of Australia, Commonwealth of Australia (Geoscience Australia) indicates that the site is likely to be underlain by porous, extensive highly productive aquifers.

No information on groundwater flow direction is currently available, however based on local topography shallow groundwater is likely to flow to the north east. There is uncertainty with respect to this assessment.

3.11 SENSITIVE LOCAL ENVIRONMENTS

Underground Petroleum Storage System (UPSS) environmentally sensitive zones represent areas that are likely to be vulnerable to contamination from leaking UPSS, due to geological or groundwater properties. A review of the Department of Environment, Climate Change and Water (NSW) UPSS Regulation – Sensitive Zones Map (2010) (Randwick City Council) shows that the site is located within an UPSS environmentally sensitive zone.

UPSS environmentally sensitive zones have been identified by the NSW EPA through a risk-based approach to protecting sensitive environmental receptors. They represent a conservative assessment of areas that are likely to be vulnerable to contamination from leaking UPSS (due to geology or groundwater properties), or in close proximity to vulnerable environmental receptors

(such as national parks and anything that is likely to be adversely affected by contaminated groundwater, e.g. groundwater bores, rivers, lakes, etc.).

As there are no records of any UPSS at the Site, this is not considered further.

3.12 ACID SULFATE SOILS

With reference to the Botany Bay Acid Sulphate Soils Risk Map, Edition 2, 1:25,000 (Department of Land and Water Conservation, 1997), the site is situated in an area of no known occurrence of acid sulfate soils: "*Acid sulfate soils are not known or expected to occur in these environments*" With respect to the Randwick City Council LEP 2012 the site is not situated on land classified as Class 1 - 5 and as such Acid Sulfate Soils are not considered further.

3.13 METEOROLOGY

The site is located approximately 6.4 km north east of the former Commonwealth Bureau of Meteorology Sydney Airport weather station (Station ID 066037). The following climatic information was obtained from this data source, based on data recorded from 1939 to 2019:

- Mean monthly rainfall was variable throughout the year, with rainfall being highest during June (125.3 mm) and lowest during September (60.0 mm);
- Highest mean temperatures (recorded at 3 pm) occur during the months of December to March (mean maximum 21.1 to 24.8 degrees Celsius); and
- Cooler temperatures (recorded at 9 am) occur during the months of June to August (mean temperature 10.8 to 12.5 degrees Celsius).

4 PRELIMINARY SITE INVESTIGATION (CES190901-FRE-AD)

Detailed site walkover observations, site history information, and results of limited soil sampling is presented in *Preliminary Site Investigation*, *11-19 Frenchmans Road, Randwick NSW 2031*, dated 25 November 2019 (CES document reference: CES190901-FRE-AB) and summarised below:

4.1 SITE HISTORY

A summary of the site history assessment is presented below:

- The historical title review indicates that the site has a history of mixed residential (Lots 3 and 4 in DP13779) and use as a hospital, from as early as 1936 (Part Lot 10 DP845575). A review of the previous title holders of the site identified no high-risk land uses such as heavy commercial/industrial or uses likely to require bulk storage of chemicals (except for prior hospital use and the current age care) or hydrocarbon fuels;
- Review of historical aerial photographs there is a potential for the site to have been impacted by previous developments, most likely due to the potential of historic filling and demolition of structures with the potential to contain hazardous building materials, and hospital activities (including incinerator, ash disposal, and medical wastes). It is unlikely that the site was subject to significant industrial processes based on the aerial photographs;
- Topographical map review does not indicate that the site has a risk of historical use for potentially contaminating activities such as heavy commercial/industrial uses;
- The site is not listed on the NSW EPA Contaminated Sites Register. No sites within a 500 m buffer of the site are listed on the NSW EPA Contaminated Sites Register;
- The site is not listed on the NSW EPA PFAS Investigation Programme. No sites within a 1 km buffer of the site are listed on the NSW EPA PFAS Investigation Programme, Department of Defence PFAS Investigation & Management Program or Airservices Australia National PFAS Management Program;
- The site is not subject to an Environment Protection Licence (EPL) issued under the Protection of the Environment Operations Act 1997; and
- Review of historic business directories indicate that the Site has been used as a hospital from 1950.

4.2 SITE WALKOVER

A summary of the site walkover assessment is presented below:

- A grease trap was observed at the east of the larger central building. Approximately 1 m wide by 3 m long, depth unknown;
- A cleaning and paint storage room was identified near the western boundary of the site;
- A hydraulic oil storage tank and pump associated with the lift in the main facility building;
- No bulk fuel storage was observed onsite during the site walkover;

- No groundwater wells were observed onsite during the site walkover; and
- No suspected Asbestos Containing Materials (ACM) were observed on-site during the site walkover however it was reported that there are ACM in the central structure of the site. An Asbestos Register was not provided.

4.3 INTRUSIVE INVESTIGATION

A summary of the intrusive investigation is presented below:

- Fill material comprising fine grained brown to dark brown sand with trace fine angular gravel and roots was encountered to a maximum depth of 1.5 m;
- Groundwater was not observed during drilling. Boreholes were extended to 8 m depth;
- No soils encountered during fieldwork exhibited visual or olfactory indicators of contamination such as odours or staining;
- No soils encountered during fieldwork exhibited indicators of ash or medical wastes;
- No asbestos or suspected asbestos containing materials (ACM) was observed in site soils field screening; and
- In soil samples collected and analysed, contaminants of potential concern identified in the Preliminary Conceptual Site Model did not exceed the conservative Tier 1 human health or ecological risk screening criteria.

5 PRELIMINARY CONCEPTUAL MODEL

Based on the results of the PSI (CES 2019), a preliminary conceptual site model is presented below.

5.1 POTENTIAL SOURCES OF CONTAMINATION

From a review of the available information relating to the site and surrounding area, there is a potential for the site to have been impacted by the previous activities at the site:

- The site has been subject to filling for the purposes of previous developments;
- Three samples of fill material were collected and analysed as part of the investigation. Contaminant concentrations were not detected in excess of the conservative Tier 1 screening criteria. Due to the preliminary nature of the investigation and the likely heterogeneous nature of fill materials, the potential for contaminant concentrations in excess of the Tier 1 screening criteria at the site remains;
- Previous structures (above and below ground) at the site which have been demolished may have contained hazardous building materials, with the potential to impact near surface soils;
- No potential ACM were observed during fieldwork and asbestos, lead, and PCB concentrations were not detected above the Tier 1 screening criteria. Due to the preliminary nature of the investigation and the likely heterogeneous distribution of hazardous building materials (if present) both above and below ground (such as asbestos pipework) the potential for hazardous building materials at the site remains;
- The site has a history of use as a hospital, which could include the use of small scale plant (incinerator and resultant ash disposal), asbestos pipework (such as fire water pipework) and operational equipment and chemical storage which have the potential to impact soil and groundwater from incidental leaks and spills;
- During the site walkover assessment, a chemical storage area, hydraulic elevator and grease trap were observed. Investigation of this potential sources of impact has not been undertaken.
- Based on anecdotal information, there is potential for hydrocarbon impact arising from stormwater pipes downgradient of the hydraulic elevator sump pump.
- Two service stations have been located within 100 m of the site, one 24 m to the west and one 100 m to the east. The direction for groundwater flow is unknown, however based on a review for the local topography, it is likely to flow to the east, which may result in contaminants from the nearby former service station impacting the site;
- Based on observations made during drilling, groundwater at the site is a depths of greater than 8 mbgl. Applying the petroleum vapour intrusion assessment site screening using vertical screening distances (ITRC 2014), groundwater at the site is greater than the maximum vertical screening distance (distance from the petroleum vapour source and the bottom of the building foundation) of 5.49 m (18 ft) for industrial petroleum sites, therefore

petroleum vapour intrusion risk from an offsite source is considered to be low, and is therefore not considered further.

5.2 CONTAMINANTS OF POTENTIAL CONCERN (COPC)

Contaminants of Potential Concern (CoPC) associated with the site are:

Fill Materials of unknown origin:

The COPCs for fill materials that may be encountered onsite are presented below based on a broad range of potential contaminants.

- Petroleum Hydrocarbons (analysed as TRH);
- Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Organochlorine Pesticides (OCP);
- Polychlorinated Biphenyls (PCBs);
- Arsenic, cadmium, copper, lead, mercury, and zinc (common metal and metalloids); and
- Asbestos.

Developments containing hazardous building materials (including demolition):

The COPCs for developments containing hazardous building materials are presented below;

- Lead; and
- Asbestos.

Small scale plant and operational equipment and chemical storage.

- TRH;
- BTEX;
- Lead; and
- Fats oils and grease.

5.3 POTENTIAL PATHWAYS

The pathways through which contaminants may reach receptors are in part determined by the nature and behaviour of the contaminant. Considering the potential contamination sources and the likely subsurface conditions to be encountered on the site, the following potential pathways have been identified, taking into account the development plan:

- Direct dermal contact;
- Incidental ingestion;

- Inhalation of particulate matter (dust);
- Inhalation of vapours from impacted soil;
- Dissolution or suspension (leaching) from soils to groundwater; and
- Ecological exposure to impacted soil and groundwater.

Pathways not considered:

- Ingestion of impacted biota (terrestrial or aquatic); and
- Inhalation of vapours from groundwater.

5.4 RECEPTORS

Based on the proposed high-density residential aged care development, the potential receptors for the contaminants of concern are:

- Site workers (acute/short term risks);
- Current/Future site users;
- Offsite residential users;
- Groundwater; and
- Aquatic ecological receptors (i.e. Glebe Gully and Coogee Bay, approximately 350 m and 1.8 km east of the site, respectively).

5.5 CONCEPTUAL MODEL – POLLUTANT LINKAGES

The identified contaminant sources, pathways and receptors have been assessed to establish plausible pollutant linkages:

- Dermal contact with impacted soils in landscaped areas by current/future site users;
- Dermal contact with impacted soils during construction by site workers;
- Incidental ingestion of impacted soils in landscaped areas by current/future site users;
- Incidental ingestion of impacted soils during construction by site workers;
- Incidental ingestion of impacted surface water during construction by site workers;
- Inhalation of particulate matter (asbestos or contaminated soil/dust) by current/future site users;
- Inhalation of particulate matter (asbestos or contaminated soil/dust) during construction by site workers;
- Inhalation of volatile contaminants from soil by current/future site users (indoor and outdoor);
- Inhalation of volatile contaminants from soil by site workers during construction (indoor and outdoor);

- Contamination of groundwater through the downward migration of leachable contaminants;
- Potential contamination of surface water could occur through downward and lateral migration of leachable/soluble contaminants;
- Terrestrial biota uptake of contaminants from soils or groundwater; and
- Aquatic biota uptake of contaminants from surface water.

As a number of potential pollutant linkages are present, further assessment was carried out as recommended by the PSI (CES 2019).

6 FIELDWORK PROGRAMME

The following sampling programme was designed based on the previous assessment and investigation.

6.1 DATA QUALITY OBJECTIVES

The DQO process is a seven-step iterative planning approach that is used to define the type, quantity and quality of data needed to inform decisions relating to the objectives of the investigation.

6.1.1 Step 1 – State the Problem

This step comprises a summary of the environmental impact that will require new environmental data and identifies the resources required to resolve the issue.

The problem is:

- Due to the limited investigation conducted to date and based on the findings of the PSI further investigation is required to assess the extent and nature of any contamination of the soil.
- Data gaps have been identified in the understanding of the site's suitability based on the PSI assessment, as presented in the recommended further investigation in the PSI (CES 2019).

The objective is:

- Further the understanding of the contamination (if any) at the site and the assessment of site suitability; and
- Determine if the site is suitable for the proposed new aged care development.

The consultant project team will comprise Mark Challoner (CEnvP – Site Contamination Specialist) and Tristan Goodbody (Associate Environmental Engineer) for technical review and Andrew Carras (Environmental Scientist) for fieldwork and technical reporting.

The Sub-contract analytical laboratories are Envirolab (Primary) and ALS (Secondary).

The appropriate regulator is Randwick City Council.

The preliminary conceptual site model is presented in Section 5.

6.1.2 Step 2 – Identify the Decision Statement

This step comprises the identification of decisions that need to be made about the impact and the new environmental data required to make them.

- Are there concentrations of contaminants of concern which exceed the adopted screening criteria selected based on the receptor and exposure type presented in the CSM?
- How do the detected concentrations of contaminants of concern compare to the criteria for classification of waste?

It is expected that by resolving these questions, it will be possible to resolve the objectives of the project.

6.1.3 Step 3 – Identify Inputs to the Decision

This step involves the identification of the information required to support any decision and whether any new environmental data will be required.

- Relevant existing soil data from previous investigations;
- New soil laboratory analytical data collected, field observations and measurements made during field work;
- Field and laboratory QAQC data quality assessment;
- Published Tier 1 Screening criteria for the contaminants of concern as published in *ASC NEPM Schedule B1* (NEPC 2013) adopted screening criteria and rational are presented in Section .

6.1.4 Step 4 – Define the Study Boundaries

This step involves the spatial and temporal aspects of the environmental media that the data must represent to support the decision (s).

- Lateral as defined by the site perimeter shown on Figure 2;
- Vertical as defined by the site surface to the maximum depth of the deepest soil bore advanced at the site during investigation, 8 m; and
- Temporarily This project involves the collection of spot sampling events at the proposed locations. As a result, the concentrations detected by the laboratory in the samples recovered will be representative of discrete moments in time and as such, will be subject to climatic and anthropogenic activities at that point or related to human activities that have occurred up to that point at the particular sampling location and therefore may not be representative of long term concentrations. If average concentrations are required to enable an understanding of longer term (chronic) risks, then additional sampling may be required.

6.1.5 Step 5 – Develop the Decision Rule

This step comprises defining the parameter of interest, specifying the action level and integrating Step 1 to 4 into a single statement that gives a logical basis for choosing between alternative actions. • The acceptable limits for the QA/QC samples collected during the investigation are presented in Table 4;

A decision on the acceptance of the analytical data will be made on the basis of the Data Quality Indicators (DQI) in the context of the PARCC parameters as follows.

- Precision: A quantitative measure of the variability (or reproducibility) of data;
- Accuracy: A quantitative measure of the closeness of reported data to the "true" value;
- Representativeness: The confidence (expressed qualitatively) that data is representative of each media present on Site;
- Completeness: A measure of the amount of useable data from a data collection activity; and
- Comparability: The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.
- The parameters of interest are the concentrations in the sampled media of the contaminants of concern;
- Assessment criteria are Published Tier 1 screening criteria for the contaminants of concern (ASC NEPM Schedule B1 (NEPC 2013)).
- Criteria for General Solid Waste (GSW) and Restricted Solid Waste (RSW) presented in the *Waste Classification Guidelines: Part 1 Classifying Waste* (NSW EPA 2014).

The following decision rules are presented:

- 1. Are contaminant concentrations detected in excess of the adopted Tier 1 screening criteria?
- 2. Do contaminant concentrations pose an unacceptable risk to the receptors identified in the CSM?
- 3. Is there sufficient data to revise the CSM and resolve the data gaps in the site characterisation?
- 4. Is remediation or management of contamination required to make the site suitable for the proposed development?
- 5. How do the detected concentrations of contaminants of concern compare to the criteria for classification of waste?

6.1.6 Step 6 – Specify Limits on Decision Errors

This step involves specifying the decision-maker's acceptable limits on decision errors.

Specific limits for this project are in accordance with the appropriate guidance made or endorsed by the NSW EPA, appropriate indicators of data quality, and standard procedures for field sampling and handling.

6.1.7 Step 7 – Optimise the Fieldwork Program Design

The optimised program for the fieldwork is presented in the subsequent Section 6.2.

6.2 INTRUSIVE INVESTIGATION

Fieldwork was completed on 3 May 2021.

6.2.1 Sample Density

Eight locations were assessed on 03 May 2021; which, when combined with the three sample locations assessed previously as part of the PSI (CES 2019), exceeds the minimum sample density prescribed by Table A of the *Sampling Design Guidelines* (NSW EPA 1995) for a detailed site investigation for a site 0.27 ha in size (8 locations).

6.2.2 Sample Pattern

Sample locations were selected on a targeted basis (four locations BH8 to BH11)) and in accessible areas of the site distributed to provide of site coverage (four locations BH4 to BH7).

Sample locations are presented on Figure 2.

6.2.3 Sample Depth

The sampling at the eight locations was conducted by drilling boreholes using a hand auger to a maximum depth based on method refusal. Where required, concrete coring techniques were used to penetrate concrete slabs at surface.

Samples were collected from near surface sample points and through the soil profile at regular intervals (where possible).

6.2.4 Field Screening

Field screening of samples were carried out by a combination of olfactory and visual contamination indications such as odours, staining or the presence of building rubble, and using a calibrated Photoionisation Detector (PID). A calibration certificate for the PID is provided in Appendix E.

Field screening in accordance with ASC NEPM (NEPC 2013), Schedule B (2) Section 11.3.2 of 10 L soil samples for asbestos was not carried out due to the limited volume of soils collected from boreholes completed.

6.2.5 Sample Collection

Care was taken to ensure that representative samples were obtained, and that the integrity was maintained, particularly when dealing with potentially volatile or semi-volatile compounds. Samples were collected directly from hand augers using new nitrile gloves for each sample and placing the soil directly into laboratory supplied containers.

Samples for QAQC assessment (Blind and Split samples) were not homogenised in order to preserve potentially volatile or semi-volatile compounds, instead duplicate and triplicate samples were collected from similar depths from similar targeted material.

6.2.6 Decontamination Procedures

Dedicated sampling equipment (new nitrile gloves) and laboratory prepared sample containers were used. The hand auger was decontaminated using a combination of Decon 90 and potable water.

6.2.7 Sample Containers

Soil sample containers comprised glass jars with Teflon lined lids and zip locked bags supplied by the primary laboratory. The jars were completely filled leaving no headspace, labelled with the job number, date, unique sampling point identification and initials of the project environmental scientist/engineer.

6.2.8 Method of Sample Storage and Handling

The samples were immediately placed in an esky/cool box in which ice has been added, to keep the samples cool. The samples in the cool box were then transported to the laboratory.

6.2.9 Sample Analysis Schedule

Based on the preliminary CSM, samples were analysed for Total Recoverable Hydrocarbons (TRH), Benzene Toluene Ethylbenzene and Xylene (BTEX), Polycyclic Aromatic Hydrocarbons (PAH) Polychlorinated Biphenyls (PCB), Organochlorine and Organophosphate Pesticides (OCP/OPP), 8 common metals and metalloids and asbestos (500mL NEPM).

6.2.10 Sample Logging

The boreholes were logged in accordance with AS1726-2017 and soil samples were collected during fieldwork by a qualified experienced geo-environmental engineer. The log records the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, odour and moisture content;
- Depth of excavation;
- Method of excavation; and
- The depth of first encountered free water.

6.2.11 QA/QC Documentation

While on site, the supervising engineer filled out a copy of a 'sample register', which documents:

- Time of sample collection;
- Weather; and

• Sample location and depth.

All samples were classified in the field based on soil/fill characteristics and obvious signs of contamination such as discolouration or odour were noted on the field logs.

All samples, including QC samples, were transported to the primary and check laboratories under Chain-of Custody (COC) procedures and maintained in an ice-filled cooler. The following details were recorded on the COC form:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed; and
- Sample preservation method.

7 SITE ASSESSMENT CRITERIA

The selection of the most appropriate investigation levels for use with a site specific environmental setting and land use scenario should consider factors including the protection of human health and ecosystems.

Investigation and screening levels are provided in *Guideline on Investigation Levels for Soil and Groundwater* (Schedule B1, ASC NEPM (NEPC 2013)) for commonly encountered contaminants which are applicable to generic land use scenarios and include consideration of, where possible, the soil type and the depth of contamination.

Investigation levels and screening levels are the concentrations of a contaminant above which further appropriate investigation and evaluation will be required. Investigation and screening levels provide the basis of Tier 1 risk assessment.

7.1 SOIL

7.1.1 Human Health Assessment

To address potential health impacts at the site, CES compared the analytical testing results against a set of health based soil investigation criteria appropriate for the proposed land-use. That is, the Health Investigation Level (HIL) has been set at a level that provides confidence that contaminant concentrations below the HIL will not adversely affect human health.

As described in Section 3.4, the future site land-use proposed is high density residential aged care living development with limited areas of landscaping; therefore, HIL B (residential land minimal opportunities for soil access) criteria have been adopted as a conservative approach for the assessment of human health for the main portion of the site and HIL C (public open space) has been adopted for the minor landscaped areas of the site.

For multistorey buildings where non-residential uses (e.g. car parking or commercial use) exist in a basement or at ground level, then land use category HSL D (commercial/industrial) should be applied for the assessment of vapour intrusion. Based on the proposed development at the site, there is a proposed car park and other non-residential uses in the two basement levels. Therefore, the HSL D will apply to the majority of the site for the assessment of vapour intrusion, with HSL C applied to the minor landscaped areas of the site.

7.1.2 Asbestos

Health screening levels for asbestos in soils, which are based on scenario-specific likely exposure levels, are outlined in Table 7 of Schedule B1, ASC NEPM (NEPC 2013). Based on the proposed

aged care living development with gardens and access to soil, the Residential B exposure setting has been selected for the majority of the site and Residential C for landscaped areas.

The adopted Site Assessment Criteria based on the land use presented in the proposed development are presented on Figure 6.

7.1.3 Ecological Assessment

To address the potential ecological impacts at the site, CES compared the analytical testing results against a set of ecological investigation and screening levels (EILs) appropriate for the proposed land use of urban residential and public open space (aged care development).

The ASC NEPM (NEPC 2013) EIL criteria adopted were adjusted using the CSIRO for *NEPM Ecological Investigation Level Calculation Spreadsheet* (CSIRO, 2010) based on site specific soil physiochemical properties determined from analysis results from sample BH6/0.15 m of pH (5.1 pH), cation exchange capacity (CEC) (6.9 cmolc/kg), organic content (3.9%) and clay content (11%). Additionally, the ASC NEPM (NEPC 2013) ESL (coarse soil texture) was adopted for the ecological assessment.

7.2 WASTE CLASSIFICATION

For off-site disposal of soils, the assessment should be undertaken in accordance with the NSW EPA (2014) *Waste Classification Guidelines: Part 1 Classifying Waste*.

8 QUALITY ASSURANCE / QUALITY CONTROL

Quality Assurance and Quality Control (QAQC) assessment is presented below, including field procedures, field QAQC sampling, and laboratory QAQC procedures.

The QA/QC Data Acceptance criteria are presented in Table 4.

QA/QC Sample Type	Method of Assessment	Acceptable Range	
	Field QA/QC	•	
Blind and Split Replicates	The assessment of split replicate is undertaken by calculating the Relative Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as: $ X_1 - X_2 $ RPD = 100 x Average Where: X ₁ and X ₂ are the concentration of the original and replicate samples.	 levels detected: 0 - 100% RPD (When the average concentration is < 5 times the PQL) 0 - 75% RPD (When the average concentration is 5 to 10 times the PQL) 0 - 50% RPD (When the average concentration is > 10 times the PQL) 	
Blanks (Rinsate, Trip	Each blank is analysed as per the original	Analytical Result < PQL	
and Field Blanks)	samples.		
	Laboratory QA/QC		
Laboratory Duplicates	Assessment as per Split Replicates.	 The acceptable range depends upon the levels detected: 0 - 100% RPD (When the average concentration is < 4 times the PQL) 0 - 50% RPD (When the average concentration is 4 to 10 times the PQL) 0 - 30% RPD (When the average concentration is > 10 times the PQL) 	
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the % Recovery of the known spike or addition to the sample. C - A % Recovery = 100 x $-$ B Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; C = Calculated Concentration.	Surrogates: 70% – 130% Matrix Spikes: 70% - 130% (Organics) 80% - 120% (Inorganics) LCS: 70% - 130% (Organics) 90% - 110% (Inorganics)	
Method Blanks	Each blank is analysed as per the original samples.	Analytical Result < PQL	

Table 4: QA/QC Data Acceptance Criteria

8.1 GENERAL FIELD QAQC PROCEDURES

Quality assurance procedures adopted for the assessment included:

- 1. Conducting fieldwork and sampling in accordance with established CES Standard Operation Procedures;
- 2. Ensuring field screening instruments are calibrated;
- 3. Placing samples immediately on ice following sampling;
- 4. Ensuring correct sampling containers and preservatives are employed for contaminants being analysed; and
- 5. Ensuring analysis was performed within recommended holding times.

All samples were labelled with a unique identifier consisting of the sample location. Soil samples were placed into laboratory prepared and supplied sample containers. After collection, samples were placed directly into an ice-filled esky and transported to a NATA accredited laboratory for the analytes selected, under chain of custody (COC) protocols.

8.2 FIELD QA / QC RESULTS

Field QA/QC for this project consisted of a blind replicate, split replicate, a trip spike, and a trip blank. The results of the QAQC assessment including the Relative Percentage Difference (RPD) calculations are presented in Tables 15 and 16.

Blind (duplicate) and split (triplicate) samples provide a check on the analytical proficiency of the laboratories and consist of duplicate or triplicate samples collected from the same location and media. These samples are preserved, stored, transported, prepared, and analysed in an identical manner in the primary laboratory (blind) or the secondary laboratory (split).

8.2.1 Blind Replicate Samples

One blind replicate (duplicate) sample was collected to meet the requirements of the ASC NEPM (NEPC 2013) of a minimum of 5% of samples. The sample was preserved, stored, transported, prepared and analysed in an identical manner. The results of analyses on the primary and blind replicate sample pair were assessed by calculating the Relative Percentage Difference (RPDs) between the results.

Blind replicate RPD results conformed to the Data Acceptance Criteria (DAC) presented in Table 4.

8.2.2 Split Samples

One split replicate (triplicate) sample was collected to meet the requirements of the ASC NEPM (NEPC 2013) of minimum of 5% of samples. The sample was preserved, stored, transported, prepared and analysed in an identical manner. The results of analyses on the primary and blind replicate sample pair were assessed by calculating the Relative Percentage Difference (RPDs) between the results.

Split replicate RPD results conformed to the Data Acceptance Criteria (DAC) presented in Table 4.

8.2.3 Trip Blanks

Trip blanks consisted of pre-washed bottles containing laboratory prepared distilled or de-ionised water or uncontaminated soil. The role of trip blanks is to detect potential contamination during sample transport. These samples reside in transport vessels during sampling activities and are not opened in the field.

One Trip Blank was collected and analysed. Trip Blank results were not detected in excess of the laboratory PQL, and therefore conformed to the DAC.

8.2.4 Trip Spikes

Trip spikes consisted of pre-washed bottles containing laboratory prepared water or soil spiked with a distinct concentration of volatile contaminant. The role of trip spikes is to ensure correct handling, in particular the use of ice boxes, is utilised when during collection and transport.

One Trip Spike was collected and analysed. Trip Spike recoveries were detected within the range presented as acceptable in the DAC.

8.3 LABORATORY QA/QC ASSESSMENT

The reliability of test results from the analytical laboratories was monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by Envirolab (the primary laboratory) and ALS (the secondary laboratory) specifies holding times, extraction dates, method descriptions, Chain of Custody (COC) requirements, analysis, PQLs and acceptance criteria for the results. Laboratory QA/QC requirements to be undertaken by Envirolab are based on ASC NEPM (NEPC 2013) requirements.

Laboratory QA/QC assessment results are presented in the Laboratory Certificates of Analysis and documentation presented in Appendix C. Review of QAQC comments in the laboratory Certificates of Analysis did not identify issues which would indicate that are likely to have had a material effect on the assessment of laboratory analytical data.

8.4 QAQC ASSESSMENT SUMMARY

The field procedures applied, and laboratory QA/QC programme demonstrates that the data provided by the laboratory is representative of the properties of the samples provided by CES. The samples were collected in accordance with established CES standard operating procedures. The QA/QC assessment did not detect any issues with the quality of the data collected therefore CES has a high degree of confidence in the quality of the data provided, and the data within this report is representative and suitable for the assessment.

9 **RESULTS**

9.1 ENCOUNTERED SUBSURFACE CONDITIONS

Detailed descriptions and depths of materials encountered are presented on the borehole logs included in Appendix D.

A subsurface model has been prepared and is presented in Table 5.

The depths of the various strata are based on the depths encountered at the borehole locations and may be different at other parts of the site.

It should be noted that the depths provided in this table relate to the ground level at the time of the current investigation in May 2021.

Table 5: Inferred	Subsurface Model
--------------------------	------------------

Geotechnical Unit	Approximate Depth to Top of Unit (m)	Approximate Thickness (m)	Typical Description
Concrete	0.0	0.1	• CONCRETE
FILL	0.0 - 0.12	0.40 to 1.4	 Silty SAND: fine to medium grained, well sorted, dark brown, trace sub-rounded gravels, some minor clay (some locations), with rootlets (some locations), brown/grey/dark brown/dark grey, foreign materials include terracotta, glass, and bitumen (some locations) SAND, fine grained, brown/dark brown. Trace angular gravel, roots. Moist
SAND	0.35 to 1.5	0.25	• Clayey SAND: fine to coarse grained, light grey/dark grey/light brown/white, trace fine angular gravel
SANDSTONE	0.20 to 1.75	>7.25 (Base not penetrated)	• SANDSTONE: fine grained, dark to pale grey, brown and red, extremely weathered to fresh, extremely low to high strength. Horizontal laminations of shale (1-5 mm thick at 10-50 mm spacings)

Groundwater was not encountered during drilling.

9.2 FIELD SCREENING

No soils encountered during fieldwork exhibited visual or olfactory indicators of contamination such as odours or staining.

PID screening of soils did not detect VOC in soil headspace in excess of 7.1ppm indicating volatile contamination is unlikely. PID results are presented on borehole logs presented as Appendix D.

No asbestos or suspected asbestos containing materials (ACM) were observed in site soils.

9.3 LABORATORY ANALYSIS

Soil analytical results are presented in Table 14, including a comparison to the adopted screening criteria.

Asbestos field screening results and laboratory analytical results are presented on Table 15, including a comparison to the adopted screening criteria.

A comparison of soil analytical results to the waste classification guidelines are presented in Table 19.

Tables 14, 15 and 19 include analytical results from the PSI report (CES 2019a) to allow for a complete assessment of the site's environmental data.

Laboratory Certificates of Analysis, Sample Receipt Notification, and Chain of Custody documentation is presented as Appendix C.

9.3.1 Human Health Screening Assessment

The following exceedances of the adopted human health screening assessment were detected, as presented in Table 14:

- Carcinogenic Polycyclic Aromatic Hydrocarbons expressed as Benzo(a)pyrene Toxic Equivalence Quotient (TEQ) exceeded the human health screening criterion in samples BH8/0.15 (6.6mg/kg), BH10/0.15 (6.5mg/kg), and BH11/0.15 (8.4mg/kg);
- Aldrin and Dieldrin exceeded the human health screening criteria in sample BH9/0.15 (440 and 13 mg/kg, respectively); and
- Lead exceeded the human health screening criterion in samples BH4/0.15 (1,300 mg/kg), BH8/0.15 (2,200 mg/kg), and BH11/0.15 (2,100 mg/kg).

9.3.2 Ecological Assessment

The following exceedances of the adopted EIL/ESL criteria were detected, as presented in Table 14:

- Benzo(a)pyrene exceeded the ESL criterion in samples BH4/0.15 (1.2 mg/kg), BH6/0.15 (2.1 mg/kg), BH8/0.15 (4.6 mg/kg), BH10 /0.15 (4.6 mg/kg), and BH11/5.9 (5.9 mg/kg);
- TRH >C16-C34 exceeded the ESL criterion in samples BH6/0.15 (410 mg/kg), BH8/0.15 (370 mg/kg), BH9/0.15 (1900 mg/kg), and BH10/0.15 (700 mg/kg);

- Copper exceeded the EIL criterion in sample BH11/0.15 (140 mg/kg);
- Lead exceeded the EIL criterion in samples BH4/0.15 (1,300 mg/kg), BH8/0.15 (2,200 mg/kg), and BH11/0.15 (2,100 mg/kg); and
- Zinc exceeded the EIL criterion in samples BH8/0.15 (430 mg/kg) and BH11/0.15 (670 mg/kg).

Soil physiochemical properties used in the EIL/ESL calculation re provided in Table 18.

9.3.3 Waste Classification

A summary of waste classification results as presented in Tables 6 and 19, is presented below:

- Concentrations of benzo(a)pyrene (maximum 5.9 mg/kg) reported were below the SCC1 and TCLP1 criteria for general solid waste;
- Scheduled chemical concentrations exceeded the SCC2 criteria for restricted solid waste and therefore should be classified as scheduled chemical waste (as hazardous waste);
- Concentrations of lead (maximum 2200 mg/kg) were below the SCC2 and TCLP2 criteria for restricted solid waste;
- No ACM or asbestos fines were detected or observed within any of the fill materials.

10 DISCUSSION OF ADDITIONAL INTRUSIVE INVESTIGATION

10.1 HUMAN HEALTH RISK ASSESSMENT

Exceedance of the human health screening criteria for Carcinogenic Polycyclic Aromatic Hydrocarbons expressed as benzo(a)pyrene TEQ, adlrin and dieldrin, and lead have been identified in fill soils, which indicates that the fill soils at the site may pose an unacceptable risk to human health.

Statistical analysis of contaminant concentrations (including 95% upper confidence limit, mean, and standard deviation) using the PRO UCL software package is presented in Table 14.

Human Health exceedances are presented on Figure 3.

Based on the above, remediation or management is required to make the site suitable for the proposed development.

10.2 ECOLOGICAL RISK ASSESSMENT

Exceedances of the EIL/ESL criteria for benzo(a)pyrene, lead, zinc, and TRH have been identified in fill soils, which indicates that the fill soils at the site may pose an unacceptable risk to ecological receptors.

Statistical analysis of contaminate concentrations (including 95% upper confidence limit, mean, and standard deviation) using the PRO UCL software package is presented in Table 14. Statistical analysis is provided in Appendix F.

Ecological exceedances are presented on Figure 3.

Based on the above, remediation or management is required to make the site suitable for the proposed development.

10.3 PRELIMINARY WASTE CLASSIFICATION

Preliminary waste classification is presented in Table 6.

Unit	Extents	Thickness of Unit (m)	Description	Number of Samples Analysed	Waste Classification	Expected Volume m ³
1 FILL	BH9	0.07	FILL:SiltygravellySAND:finetomediumgrained,wellsorted,sub-roundedgravels,brown/grey/darkgrey	1	Hazardous Waste - Scheduled Chemical Waste	20
2 FILL	BH4, BH8, and BH11	0.35 to unknown	FILL: Silty SAND: medium grained, well sorted, dark brown, with gravel and rootlets FILL: Silty SAND: fine to medium grained, well sorted with clay and minor gravels, grey/brown FILL: Silty gravelly SAND: fine to medium grained, well sorted, sub- rounded gravels, dark brown/dark grey, foreign materials include glass and bitumen	3	Restricted Solid Waste	110
3 FILL	BH1 to BH3, BH5 to to BH7, and BH10	0.07 to 1.40	FILL: silty SAND, medium grained, well sorted dark brown, with gravels and rootlets.	7	General Solid Waste	990

Table 6: Preliminary Waste Classification

Unit	Extents	Thickness of Unit (m)	Description	Number of Samples Analysed	Waste Classification	Expected Volume m ³
4 Natural Soil	Across	0.05 to	Clayey SAND: medium to	0	Unknown	9370
and Natural	site	unknown	coarse grained, well			
Sandstone			sorted, light brown.			
			Sandstone: fine grained,			
			dark grey/brown, trace			
			fine, shale laminations			

Note 1: Based on borehole logs and subsurface model presented in Table 5

Note 2: Natural Material was calculated subtracting total indicative fill volume removed from the estimated Bulk Earthworks Quantity of cut presented in Appendix B.

Note 3: Indicative volumes are based on observations made during fieldwork and assumed remediation extents based on half the distance between impacted and unimpacted investigation locations, and as such are subject to validation assessment and actual thicknesses encountered during remediation works.

10.4 RECOMMENDATIONS

Based on a Tier 1 screening human health and ecological risk assessment, the Site in its current condition is not suitable for the proposed development, and remediation or management of contamination present on Site is required.

As the proposed development includes excavation of the entire soil profile over the majority of the site to allow for the construction of basements, excavation and offsite disposal is likely to be the most suitable remediation method to manage the human health and ecological risks identified in the investigations and make the site suitable for the proposed development.

The extent of remediation required is presented on Figure 4 and a waste classification plan is presented on Figure 5. The extent of the excavations is presented on Figure 4 and is subject to confirmation by validation sampling and has been determined based on half the distance between exceeding samples and non-exceeding samples.

It is noted that remediation extents could be further delineated through further sampling during remediation; however, this could result delays to allow for sample analysis and assessment.

A Remedial Action Plan is presented in the subsequent Sections.

11 REMEDIAL ACTION PLAN

The NSW Environmental Planning and Assessment Regulation (2000), under the Environmental Planning and Assessment Act (EP&A) 1979 (NSW Government, 1979), provides the legislative framework within which notifications and approvals must be made for redevelopment of the site. The remediation works (involving potential exposure to contaminated materials and handling potential contaminated waste materials) to be undertaken must comply with the applicable environmental legislative requirements. Table 7 provides a summary of the applicable legislation and regulations for the proposed remediation works.

Legislation / Regulation	Applicability
Contaminated Land Management Act 1997	Establishes the process for investigating and remediating
	land.
Protection of the Environment Operations	Framework to minimise harm to the environment (in
Act 1997 (POEO Act)	particular pollution of air and water and noise emissions)
	and not cause an offence under the Act. Discharge to
	stormwater may require a licence under the Act if required.
Protection of the Environment Operations	Transporters of waste (including Restricted Solid Waste
(Waste) Regulation 2005	and Hazardous Waste) are required to be licensed under the
	Act.
	Some waste disposal / processing facilities are required to
	be licensed under the Act.
	Requirements in relation to transportation, collection,
	storage or disposal of waste.
State Environment Planning Policy No 55	SEPP 55 specifies consent requirements for remediation,
– Remediation of Land	specifies certain considerations that are relevant for
	rezoning land, and requiring that remediation is conducted
	to meet certain standards and notification requirements.
Work Health and Safety Act 2011	All works to be conducted in accordance with WHS Act.
Work Health and Safety Regulation 2011	All works to be conducted in accordance with WHS
	Regulations.
SafeWork NSW	Notifications required for asbestos removal, hazardous
	chemicals, lead, and demolition.

Table 7: Applicable Legislation / Regulation

11.1 SEPP 55 REMEDIATION CATEGORY

Based on review of the Randwick Local Environmental Plan 2012, the site does not fall within the definition of Category 1 remediation. Development consent is required for Category 1 remediation works which may occur when there is a potential for significant environmental impacts from the work. In accordance with SEPP 55, Category 1 remediation work is a remediation work that is:

- a) Designated development; or
- b) Carried out or to be carried out on land declared to be critical habitat, or

- c) Likely to have a significant effect on a critical habitat or a threatened species, population or ecological community, or
- d) Development for which another State environmental planning policy or a regional plan requires development consent, or
- e) Carried out or to be carried out in an area or zone to which any classifications to the following effect apply under an environmental planning instrument:
- i. Coastal protection,
- ii. Conservation or heritage conservation,
- iii. Habitat area, habitat protection area, habitat or wildlife corridor,
- iv. Environment protection,
- v. Escarpment, escarpment protection or escarpment preservation,
- vi. Floodway,
- vii. Littoral forest,
- viii. Nature reserve,
 - ix. Scenic area or scenic protection
 - x. Wetland, or
 - f) Carried out or to be carried out on any land in a manner that does not comply with a policy made under the contaminated land planning guidelines by the council for any local government area in which the land is situated (or if the land is within the unincorporated area, the Western Lands Commissioner).

As such, since the remediation works, the development and the site location do not meet the definition of Category 1, CES considers that the remediation activities at the site are consistent with Category 2 remediation. Category 2 remediation does not require consent but will require 30-day notification to Council outlining the investigations and proposed remediation work plan.

11.2 NOTIFICATIONS AND PERMIT REQUIREMENTS

All works related to the site remediation must be undertaken with the appropriate notifications and permits in place. A summary of the key notifications and permits which will be required prior to initiating works are listed below:

- Notice to Council 30 days prior to commencement of the work, in accordance with Clause 16 of SEPP 55 with respect to Category 2 remediation works;
- As the works are likely to require demolition of existing site structures Development Consent to for the demolition work is likely to be required.
- Any other relevant approvals should be submitted and approved before any works are carried out.

12 REMEDIATION OPTIONS AND STRATEGY

12.1 REMEDIATION GOAL

The site is proposed to be redeveloped with the construction of a new residential aged care facility with two level basement and gardens. A copy of the development plans is presented in Appendix A. The development generally includes the excavation of the entire site from boundary to boundary to allow the construction of the proposed basement. A copy of the bulk earthworks plan is provided in Appendix B. The goal of remedial works is to provide sufficient engineering and management controls to make the site suitable (with respect to soil contamination) for the proposed development, to ensure protection of human health and the environment during and post remediation works, and to manage soils in a cost-effective manner.

12.2 REMEDIATION END POINT

The remediation end point is impacted soils are removed from site and soil contaminant concentrations in validation samples do not exceed the adopted remediation acceptance criteria

12.3 REMEDIATION CRITERIA

As a conservative approach, in the absence of any site specific risk assessment and modelling (as defined in *Contaminated Land Guidelines Consultants Reporting on Contaminated Land* (NSW EPA 2020)), the Tier 1 screening criteria presented in Section 7 have been adopted as remediation criteria to ensure the soil contamination is remediated to a level that does not present an unacceptable human health or ecological exposure risk based on the proposed land use setting.

Use of the conservative Tier 1 screening criteria was considered appropriate as remediation criteria due to the proposed development, where extensive excavation and offsite disposal was required by the design.

Site land use settings and site remediation criteria are presented in Figure 6 and Table 20, respectively.

12.4 EXTENT OF REMEDIATION REQUIRED

Exceedances of the Site Screening Criteria are presented on Figure 3 and the corresponding extent of remediation is presented on Figure 4.

In the remediation extents presented on Figure 4 the vertical extent of remediation is assumed to extend to the base of the fill, and is subject to validation sampling.

12.5 REMEDIATION OPTIONS ASSESSMENT AND RATIONALE FOR SELECTION

In accordance with the Key Principles for the Remediation & Management of Contaminated Sites (Distilled from ANZECC / NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites) (NEPC 2013) the preferred hierarchy of options for site clean-up and management are:

- 1. On-site treatment so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level; or
- 2. Off-site treatment so that the contaminant is either destroyed or the associated hazard is reduced to an acceptable level, after which the soil is returned to the site.

If it is not possible for either of the two above options to be implemented, then other options for consideration should include:

- a) removal of contaminated soil to an approved site or facility, followed by (where necessary) replacement with clean fill;
- b) isolation of the contamination on-site in an appropriately designed and managed containment facility;
- c) a less sensitive land use to minimise the need for remedial works which may include partial remediation; or
- d) leaving contaminated material in-situ providing there is no immediate danger to the environment or community and the site has appropriate management controls in place.

The guidance also considers that:

- Contaminated site management strategies should reflect the need to protect all segments of the environment, both biological and physical (air, land and water, including groundwater). During the assessment and remediation of sites, there should be appropriate controls in place to control emissions to air, land and water.
- The fundamental goal of remediation should be to render a site acceptable and safe for long-term continuation of its existing use or proposed use where a change of land use is part of the remediation strategy and maximise to the extent practicable its potential future uses.
- Clean-up should not proceed if the process is likely to create a greater adverse effect than leaving the site undisturbed. This decision would need to be revised in the light of new technologies or clean-up strategies becoming available.
- A multi-disciplinary approach is essential to the effective clean-up of contaminated sites.

Consideration must be given to public and occupational health and safety in the development of any strategy to assess, remediate and manage a contaminated site.

A brief description of remedial methods is provided below.

12.5.1 Treatment Technologies

Treatment technologies are used to permanently and significantly reduce the toxicity, mobility or volume of contaminated wastes. Treatment technologies may be targeted towards in situ or ex situ remediation and may include biological, thermal, separation, and physical/chemical treatment and containment. Treatment technologies require various levels of assessment and approval prior to implementation.

12.5.2 Removal to Landfill

Removal to landfill involves physically moving impacted soil to an off-site location for storage, treatment or disposal. Waste must be assessed and managed in accordance with NSW EPA (2014) Waste Classification Guidelines. In some instances, waste soils must be treated and re-assessed prior to disposal. Waste soils must be disposed at licensed landfill premises that have the appropriate licence and is capable of accepting the waste.

12.5.3 Physical Barrier Systems (Capping)

Physical barrier systems (or capping) limit access to the impacted material, mitigate surface water infiltration through the underlying material and control or reduce migration of the substances into the surrounding environment. This option can include creating horizontal or vertical barriers around and on top of the impacted material in place or relocating the impacted material to a constructed encapsulation area. In addition, the barrier may also be used to control the emission of odours and gases/vapours, reduce erosion and improve aesthetics.

12.5.4 Institutional Controls

Institutional controls include measures such as land use restriction through zoning, site management (e.g. Environmental Management Plans) and access restrictions, restrictions on intrusive works and relocation of receptors. Although exposure can be reduced by these means, the impacted media are not directly remediated. Institutional controls can restrict design elements of a re-development.

12.6 REMEDIAL OPTIONS ASSESSMENT

A remedial options assessment for the site contamination is outlined in Table 8.

Further

Remedial Method Applicability		Method	Advantage	Disadvantage	Further Consider?
Polycyclic Aromatic	Hydrocarbons	(PAH) and Total Recoverable	e Hydrocarbons (TRH)		
On-site treatment of PAH and TRH impacted soils and re- use on-site	• Yes	 On-site in-situ or ex-situ biological, chemical, or thermal treatment (Enhanced soil washing with surfactants, bio- stimulation/bio- augmentation, landfarming, bio-pile, chemox, thermal desorption) 	 Reduced disposal volume and cost. Soils can be re-used on-site. If successful, no Environment Management Plan on property title required. 	 Requires bench scale, pilot trial studies to determine effectiveness and potential impact on site and site surroundings. Requires impact and geo- chemical assessment. Requires long-contact time with impacted soil. May not be suitable if other contaminants are found in the soil. Nature of remediation method may require Regulatory approval. Excess cut volume required for the proposed development required offsite disposal of soils 	• No
Off-site treatment of PAH and TRH impacted soils and return to the site	• Yes	• Off-site biological, chemical, or thermal treatment (Enhanced soil washing with surfactants, bio-stimulation/bio-	• Reduction of waste to landfill. Reduced disposal volume and cost.	Requires bench scale, pilot trial studies to determine effectiveness and potential impact on site and site surroundings.	• No

augmentation,

Table 8: Remedial Options Assessment

Remedial Method	Applicability	Method	Advantage	Disadvantage	Further Consider?
		landfarming, bio-pile, chemox, thermal desorption.		 Requires impact and geo- chemical assessment. Requires long-contact time with impacted soil. May not be suitable if other contaminants are found in the soil. Nature of remediation method will require Regulatory approval. Double handling of soils. Requires strict monitoring and tracking of soils and remedial method off-site. Requires verification testing of returned soils and subject to ENM Order requirements. May hold up construction if soils are not returned to site in a timely manner. Excess cut volume required for the proposed development required offsite disposal of soils 	
Excavation, transport, and disposal of PAH and TRH impacted	• Yes	• Excavate and transport soils off-site (Waste	• Fast and effective.	• Increased disposal volume and cost.	• Yes

Remedial Method	Applicability	Method		Advantage		Disadvantage	Further Consider?
soils at licensed facility		Classification is subject to further sampling and analysis).	•	Removes impacted material and subsequently any ongoing liability or need for any long- term management. If successful, no Environment Management Plan on property title required. Excess cut volume required for the proposed development required offsite disposal of soils	•	Imported VENM/ENM may be required subject to geotechnical assessment. Additional site testing to determine extent and validation upon removal. Requires excavation in accordance with CEMP.	
On-site Containment of PAH and TRH impacted soils	• Yes	• Determine extent and concentration of PAH, retain soils onsite, over excavate basement and place impacted soils at based of excavation, survey location with coordinates and elevation. Contain PAH under hard- stand, and marker tape.	•	No excavations for off-site disposal required. Reduced disposal volume and cost. Soils can be left in-place on- site. Reduction of waste to landfill.	•	Potential reduction in land value. Required vapour intrusion assessment (TRH). Handling of impacted soils during excavation works (over most of the site). Subject to further leachability testing for on-site re-use. Requires long-term management - Environmental Management Plan (EMP) on property title required. PAH soils to managed and handled via Construction Environment Management Plan (CEMP). CEMP would require site induction	• No

Remedial Method	Applicability	Method	Advantage	Disadvantage	Further Consider?
				 requirement's, control measures, and monitoring measures, and quality control measures to ensure that environmental controls are being implemented and are effective. EMP/CEMP must be administered until PAH removal is confirmed. May limit design elements of development. Excess cut volume required for the proposed development required offsite disposal of soils 	
On-site relocation of PAH and TRH impacted soils to an area of less sensitive land use	• Yes	• Determine extent and concentration of PAH, relocate PAH impacted soils to areas of less sensitive land use.	 No off-site disposal required. Reduced disposal volume and cost. Soils can be beneficially reused on-site. Reduction of waste to landfill. No EMP required. 	 Concentrations detected exceed criteria for areas onsite of less sensitive use. Subject to further leachability testing for on-site re-use. PAH soils to managed and handled via Construction Environment Management Plan (CEMP). CEMP would require site induction requirement's, control 	• No

Remedial Method	Applicability	Method	Advantage	Disadvantage	Further Consider?
				 measures, and monitoring measures, and quality control measures to ensure that environmental controls are being implemented and are effective. EMP/CEMP must be administered until PAH removal is confirmed. May limit design elements of development. Excess cut volume required for the proposed development required offsite disposal of soils 	
		tals (copper, lead, and zinc)			1
On-site containment of OCP chemicals and/or metals	 Yes metals (copper, lead, and zinc) No aldrin and dieldrin 	• Determine extent of contamination, retain soils onsite, over excavate basement and place impacted soils at based of excavation, survey location with coordinates and elevation. Contain contaminated soils beneath under hard-stand, and marker tape.	 No excavations for off-site disposal required. Reduced disposal volume and cost. Soils can be left in-place on-site if no human health risk. Reduction of waste to landfill. 	 Potential reduction in land value. Requires long-term management - Environmental Management Plan (EMP) on property title. Handling of impacted soils during excavation works (over most of the site). Contaminated soils to be managed and handled via Environmental Management 	• No

Remedial Method	Applicability	Method	Advantage	Disadvantage	Further Consider?
				 Plan. EMP requires site induction requirement's, control measures, monitoring measures, and quality control measures to ensure that environmental controls are being implemented and are effective. EMP must be administered until contaminated soil removal is confirmed. May limit design elements of development. 	
Excavation, transport, and disposal of contaminated soils impacted soils at licensed facility	• Yes	• Excavate and transport soils off-site.	 Fast and effective. Removes impacted material and subsequently any ongoing liability or need for any long-term management. If successful, no Environment Management Plan on property title required. Excess cut volume required for the proposed development required offsite disposal of soils 	 Increased disposal volume and cost. Imported VENM/ENM may be required subject to geotechnical assessment. Additional site testing to determine extent and validation upon removal. Requires excavation in accordance with CEMP. 	• Yes

Based on the remedial options assessment, the applicable and preferred remedial option for the COPCs is likely to be a excavation, transportation and disposal to a licensed facility due mainly to the excess cut/fill volumes of the proposed development and to avoid the site requiring an EMP following completion of the remediation works.

Excavation, relocation and onsite encapsulation of impacted materials is also discussed as a remedial contingency plan.

It is noted that all remediation works at the site must be undertaken in accordance with a Construction Environment Management Plan (refer to Section 13.7) to mitigate risks to workers and the public during earthworks at the site.

13 REMEDIATION METHOD

13.1 OFFSITE DISPOSAL

Excavation and offsite disposal at a suitably licenced waste disposal facility consists of physically removing the contaminated medium and therefore the contamination from the site. This method is considered likely to be the most suitable remediation approach as this approach has low technological risk and provides a fast, effective remediation methodology. This remediation method is considered suitable for TRH, PAH, aldrin and dieldrin, copper, lead, and zinc impacts.

The procedure for excavation and offsite disposal is as follows:

- The targeted areas for offsite disposal are set out onsite as presented in Figure 4;
- The area is excavated to the target depth (natural materials), with soils either excavated directly to trucks for offsite disposal at a suitably licenced waste facility capable of accepting the waste, or stockpiled onsite for offsite disposal at a later date;
- Waste classification of the material for offsite disposal is required prior to offsite disposal. Preliminary Waste classification is presented in Table 6;
- Following excavation of the fill materials, validation of the underlying natural materials should be undertaken. Excavation should be carried out in accordance with Section 14.

It is noted that continued excavation of natural material to proposed development target depth may be undertaken.

13.1.1 Excavation volumes and contamination extent

Indicative volumes of contaminated material are provided in Table 9. Volumes have been calculated using Figure 4, encountered subsurface conditions, and basement excavation depths. It is noted that there is uncertainty associated with volume estimated.

	Section A	Section B	Section C	Section D	Section E
Contamination	310	120	180	145	120
Extent/Area					
(m ²)					
Average	0.2	0.7	0.4	0.35	0.15
Thickness (m) ¹					
Indicative	65	85	75	55	20
Volume $(m^3)^3$					
Waste	Restricted	General Solid	Hazardous	Restricted	General Solid
Classification	Solid Waste	Waste	Waste	Solid Waste	Waste
			Scheduled		
			Chemical		
			Waste		

Note 1: Based on borehole logs and subsurface model presented in Table 5

Note 2: Natural Material was calculated subtracting total indicative fill volume removed from the estimated Bulk Earthworks Quantity of cut presented in Appendix B.

Note 3: Indicative volumes are based on observations made during fieldwork and assumed remediation extents based on half the distance between impacted and unimpacted investigation locations, and as such are subject to validation assessment and actual thicknesses encountered during remediation works.

Note 4: Sections are presented on Figure 4.

13.2 REMEDIATION SEQUENCING

The sequencing and timing of remediation at the site will be under control of the Site Manager who will have control of all aspects of the construction (i.e. timing, stakeholder engagement, permits, technical, plant and site management, waste management, environmental controls and subcontractor management).

It is noted that at this time the site staging plan has not been finalised. Following finalisation of the construction staging plan, the RAP should be reviewed and updated if required to suit the proposed staging plan. An indicative sequence of site construction and remediation is provided below:

- 1. Notifications given, and permit requirements obtained;
- 2. Installation of environmental, safety, traffic management, construction utilities, site boundary, and waste management controls;
- 3. Mobilisation of site amenities;
- 4. Redundant utility location, isolation, and capping;
- 5. Manual demolition and removal of interior materials, any recyclables, and any hazardous materials removal and clearance;
- 6. Excavation and removal of surface concrete slab;

- 7. Excavation, stockpiling (as required), and off-site disposal of fill materials (as required);
- 8. Classification of stockpiled soils and validation sampling of excavated remediation areas (as excavations continue); and
- 9. Excavation, and off-site disposal of natural soils.

13.3 PRELIMINARIES

Prior to undertaking any works, the nominated remediation contractor should prepare health, safety and environment plans (HESPs) to ensure that potential hazards related to the work are identified and control measures are implemented. Safe work method statements should be prepared for tasks required to be undertaken by both the environmental consultant and the remediation contractor to complete their respective scopes of work.

The remediation contractor is to confirm that all necessary environmental management, notifications, permits and safety controls are in place.

Service plans will be requested from the Dial Before You Dig service and from the Council as necessary to identify the location of underground services at the site. The remediation contractor should determine and seek approval for excavations and construction works in and over the sewer easement which may be subject to Council or Sydney Water requirements for working near pipes and assets. Sydney Water require approval under their Sydney Water Technical Guidelines: Building over and adjacent to pipe assets (Sydney Water, October 2015).

13.4 SITE PREPARATION

Table 10 below summarises the measures that should be implemented prior to remediation works at the site.

Item	Description
Site Access	Access to the site remediation area will be controlled by the remediation
	contractor performing the works and the site will be off limits to all non-essential
	personnel. The public will not have access to this area of the site.
Site Signage	Signage will be installed on the site, with direction to key areas (including to
	decontamination units, wash down areas, exits, etc.) and traffic restrictions.
	Signage at the main access points will include after-hours contact details.
Fencing or	The site is to be secured with perimeter security fencing which must be
Hoarding	maintained around the site and internal excavation areas if physical barriers are
	not already in place. Shade cloth should be installed on fences and hoardings.
	Additional fencing should be erected where required to secure work areas and

Table 10: Site Preparation

Item	Description			
	exclusion zones. Regular maintenance and repair of all retained fences and			
	hoardings within and surrounding the site will be undertaken during the period of			
	the remediation work.			
Traffic	It is the remediation contractor's responsibility to liaise with others on the			
Management	property outside the designated site works boundary, and adjacent to the site, to			
	ensure works are completed in accordance with directions from the Site Manager.			
	The remediation contractor may need to excavate, and transport impacted soils			
	off-site. Driving through the impacted areas is to be avoided and dust suppression			
	is to be undertaken where trafficking is unavoidable. Transport of materials to and			
	from site will need to consider traffic management options which take into			
	account the size of the site and any access restrictions to the site. The site access			
	and exit roads are to be monitored for spillage and tracking from the site and are			
	to be kept clean with street sweeper following waste removal off-site.			
Decontamination	The remediation contractor shall isolate or eliminate the risk of cross-			
Facilities	contamination or off-site transport of hazardous or contaminated materials via the			
	vehicle tyres by manual removal and wheel washing facility. A wheel washing			
	facility will be required for vehicles leaving the remediation area of the site, either			
	for waste disposal or other activities, based on site conditions, to minimise dust			
	and soil emitting off-site.			
	A decontamination facility for workers (hand and eye washing facilities etc.)			
	should be installed for use during the works. These facilities should be clearly signposted and indicated to site workers during site inductions.			
Supply of Utilities	The installation and commissioning of all temporary site services (e.g. electricity,			
Supply of Cultures	water, sewerage and telecommunications) required for the duration of the works			
	should be installed to the requirements of the appropriate regulatory authorities			
	and should be installed outside areas of proposed excavations. All approvals in			
	respect to the installation, operation and eventual removal of temporary services			
	shall be obtained.			
Site Contractor's	All site accommodation and facilities required for the remediation works will be			
Facilities	established in conformance with relevant regulations and authority's			
	requirements. Existing site infrastructure may be utilised for this purpose (if			
	present). Licensed persons in accordance with statutory requirements will carry			
	out all connections. The following facilities may need to be established adjacent			
	to or in close proximity to the site for the site works:			
	• site offices;			
	• amenities;			
	• work sheds (including decontamination facilities) and changing areas for			
	the use of the remediation contractor, subcontractors and consultants;			
	• temporary site sheds;			
	• bins for rubbish generated by personnel.			
Waste	Unless materials are removed from site upon excavation, designated waste			
Management	management areas are to be set up on or near to the site to manage impacted			
	excavated soil for disposal or impacted soils stored on the site are to be managed			
	in accordance with approved environmental controls.			

13.5 CONTROLLED EXCAVATION

Any impacted fill material requiring off-site disposal is to be excavated in a controlled manner under the supervision of the remediation contractor with experience in contaminated site projects.

Contaminated material is to be excavated and placed directly into waste trucks, skip bins and / or stockpiled on sealed areas or plastic sheeting in a manner and location to reduce stormwater runoff and erosion for waste classification prior to off-site disposal. Erosion control methods may include covering of the stockpiles with plastic tarp, silt fencing, hay bales, or similar to control sediments from leaving the stockpile area. Stockpile odours must be controlled through stockpile covering, application of vapour suppressant foam, or immediate removal from the site in covered truck load.

Impacted soil is to be excavated using an appropriately equipped excavator. Site personnel will wear appropriate personal protective equipment in the designated work area. The excavation depth will be sufficient to remove all impacted material.

Once the target depth has been reached and confirmed by the environmental consultant, visual inspection is to be undertaken and soil validation samples are to be collected for laboratory analysis. Results are to be compared with site assessment criteria/validation criteria as presented in Section 7 to assess the suitability of the site for high density aged care residential use following the completion of the remediation works.

13.6 SOIL STOCKPILE MANAGEMENT

If soil stockpiling is required onsite, stockpile management procedures, soil erosion and sedimentation controls, and procedures to manage contamination must be applied to all stockpiled material.

The location of the stockpiles should be selected to fit with the expected stages of the project. In addition to the general requirements and assumptions for excavations noted above, these additional requirements apply to stockpiled soils:

- The remediation contractor is responsible for the selection, location and preparation of surfaces for the placement of stockpiles. Stockpiles will only be placed at approved locations.
- Stockpiles will be strategically located to mitigate environmental impacts while facilitating material handling requirements.
- The remediation contractor is responsible for tracking the movement of materials between excavations and stockpiles.

- Stockpiles must be managed by the remediation contractor to mitigate the effects of dust, odour, vapours, and liquid run-off.
- During excavation, soils must be characterised by visual and olfactory means, and placed in segregated stockpiles based on field screening methods described below.
- The remediation contractor must excavate soils to minimise cross-contamination of soil types, contamination, and liquids.
- Contaminated materials will only be stockpiled in locations that do not pose any risk of environmental impairment of the stockpile area or surrounding areas (i.e. sealed surfaces such as sealed concrete, asphalt, high density polyethylene or a combination of these).
- Stockpiles will only be constructed in areas of the site that have been located and prepared in accordance with the requirements of this RAP.
- All such preparatory works will be undertaken prior to the placement of material in the stockpile.
- Access routes will be established around the material stockpiles to enable access from adjoining traffic routes.

The following sections outline the recommended materials segregation process, stockpile sampling methodology, laboratory analytical frequency, analyte list, and stockpile classification and assessment criteria.

13.6.1 Stockpile Segregation Process

Excavated materials shall be separated into segregated stockpiles of similar or homogeneous material types (e.g. Fill, natural soil, sand, clay), similar contamination, similar origin (e.g. a specific area of the site), and other similar characteristics (e.g. high water content, discolouration).

Observation of staining, discolouration, residual liquids, water, and odour shall be documented by the site environmental consultant during soil excavations. The stockpile documentation should include a description of the stockpiled location and prepared ground surface, material description, soil description, colour, description of discolouration or staining, odour description and intensity as non-existent, weak, distinct, strong, or very strong, estimated volume, and water or liquid description.

13.6.2 Stockpile Waste Classification

Classification of stockpiled to be removed from the site will be undertaken in accordance with the *Waste Classification Guidelines Part 1 Classifying Waste* (NSW EPA 2014). Contaminants analysed will include:

• Heavy Metals;

- PAH;
- Moderately harmful pesticides list in Table 1 of *Waste Classification Guidelines Part 1 Classifying Waste* (NSW EPA 2014);
- TRH;
- BTEX;
- Scheduled chemicals list in Table 1 of *Waste Classification Guidelines Part 1 Classifying Waste* (NSW EPA 2014); and
- Asbestos

A preliminary waste classification has been carried out and is presented in Section 10.3 and further sampling may be required.

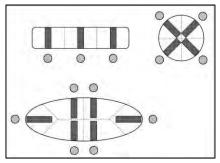
13.6.3 Stockpile Assessment and Sampling Methodology

Stockpile assessment and sampling methodology should be in general conformance with the referenced regulatory and guidance documents within this RAP and as directed by the environmental consultant. In addition, reference is made to the following document for general guidance on stockpile sampling methodology:

- AS1141.3.1-2012, Methods for sampling and testing aggregates, Method 3.1: Sampling Aggregates;
- Cement Concrete & Aggregates Australia, Guideline to Sampling for the Extractive Industry, August 2006; and
- ASTM D6009-12, Standard Guide for Sampling Waste Piles.

The method of stockpile field screening assessment and sampling shall consider the size of the stockpile, the expected degree of homogeneity, the known history, the expected contaminant distribution, contaminant volatility and physical characteristics, the space availability needed to interrogate the contents of a stockpile, the qualifications of the sampling environmental consultant and equipment operator, the quality of sampling equipment, and the environmental controls in-place.

13.6.4 General guidance for field screening stockpiles of volume up to 200m³


- Sketch and measure the stockpile dimensions, location, and immediate vicinity impediments and record this information on the Field Inspection Form.
- Collect minimum 10 field screening samples from the stockpile for visual, olfactory and/or PID measurement (where volatile contaminants are present). The screening samples should be discrete and collected evenly throughout the stockpile via a systematic grid.
- The 10 samples should be collected in both bag for PID measurement and clean glass jar(s) for laboratory analyses and be of suitable volume for analyses.

- Screening samples should be collected by opening the stockpile using mechanical means (i.e. backhoe) or penetrating the stockpile using hand auger or push tube. Examples of stockpile partitioning are shown in Figure 14-1 below as reproduced from AS11413.1-2012.
- Sampling should penetrate the entire depth of the stockpile.
- Samples should be handled with appropriate personal protective equipment.
- The samples should be collected using decontaminated equipment.
- Samples should be taken a minimum 200 mm from the soil exposed surface.

Figure 7 Example Stockpile Partitioning (Source: Reproduced from AS11413.1-2012).

13.6.5 General guidance for field screening stockpiles of volume greater than 200m³:

For stockpiles greater than 200 m³, the minimum number of field screening PID samples should include 10 samples for the first 200 m³ and then 1 sample per 25 m³. Example: a stockpile of 350 m^3 should include a minimum of 16 field screening samples.

13.6.6 Laboratory Analytical Frequency

The minimum number of soil samples required for analytical testing will be based on the NSW EPA Sampling Design Guidelines, Schedule B2, Table 4, ASC NEPM (NEPC 2013), and the Victorian EPA Publication IWRG 702.

The number of samples for analytical purposes is primarily based on the soil volume (e.g. either less or greater than 200 m^3) and the method of assessment as either:

Method 1: Highest individual measured concentration; or,

Method 2: Comparison of the calculated 95% Upper Confidence Limit of the Average Concentration against the adopted criteria.

Stockpiles Less than 200m³

For stockpiles less than 200 m³, the minimum number of samples for analyses utilising assessment Method 1 is reproduced from Table 4 Schedule B2, ASC NEPM (NEPC 2013) and IWRG702 in Table 11 below:

Cable 11: Minimum number of samples for stockpile 200 m ³ or less (minimum of 3 th	hen
:25m ³)	

Soil Volume, m ³	Minimum Number of Samples for Analyses
<75	3
75 - <100	4
100 - <125	5
125 - <150	6
150 - <175	7
175 - <200	8
>200	1:25

Where assessment Method 2 is required for stockpiles less than 200 m³, a recommended minimum number of ten samples should be analysed.

Stockpiles Greater than 200m³

For stockpiles greater than 200 m^3 , the minimum number of samples for analyses utilising assessment Method 1 or Method 2 is reproduced from IWRG702 in Table 12 below:

Soil Volume, m ³	Minimum Number	Minimum number of samples
	of Samples at 1:25	to calculate 95%UCL of the
	m ³	Average Concentration
300	12	10
400	16	10
500	20	10
600	24	10
700	28	10
800	32	10
900	36	10
1000	40	10
1500	60	10
2000	80	10
2500	100	10
3000	120	12 (1:250)
4000	160	16 (1:250)
4500	180	18 (1:250)
5000	200	20 (1:250)
>5000	1:25 m ³	1:250 m ³

Table 12: Minimum number of samples for stockpile soil volumes greater than 200 m³

*: Taken from Table 3 of EPA Publication IWRG 702

13.7 INSITU WASTE CLASSIFICATION

In the event insitu sampling is required, insitu assessment and sampling methodology should be in general conformance with the referenced regulatory and guidance documents within this RAP and as directed by an experienced environmental consultant.

The minimum number of soil samples required for insitu analytical testing will be dependent on the estimated volume of material to be classified. The sampling density will follow the criteria presented in provided in Tables 11 and 12 above.

Contaminants of concern for insitu waste classification should be consistent with those presented in Section 13.6.2 for stockpile waste classification.

13.8 CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN REQUIREMENTS

The Remediation contractor shall develop a Construction Environmental Management Plan (CEMP) that describes the measures to reduce adverse impact of the construction activities on the environment and sensitive receptors (e.g. residential properties to the south). The CEMP is to include, as a minimum:

- placement of site accommodation, toilets, storage compounds and personal decontamination units;
- vehicle access and areas where access is to be restricted;
- enclosure or delineation of the site for safety;
- protection of existing vegetation;
- methods of odour, dust, and vapour control;
- dust and asbestos trigger levels for action;
- noise mitigation and monitoring methods;
- site drainage management measures;
- control of discharges from and within the site;
- methods of control of erosion on the site;
- methods of controlling surface run off from the site;
- methods of controlling discharges to watercourses or drains so that they comply with EPA and Sydney Water requirements;
- location and procedures (including spill contingencies) for refuelling and chemical storage on site; and
- material stockpile areas and sediment control.

13.9 WASTE MATERIALS TRACKING

Materials excavated or removed from the site should be tracked in order to provide detailed and accurate information about the location and quantity of all materials both on- and off-site from the time of their excavation until their disposal. The disposal locations will be determined by the remediation contractor. Over and above waste dockets supplied by the receiving landfill, the following information is to be documented by the remediation contractor:

- Origin of material on the site;
- material type and description;
- approximate volume (m3);
- time and date of excavation and transport;
- truck licence and registration number.

This information, along with the landfill docket number, is to be provided to the environmental consultant so as to be included in the validation report.

It should be noted that Section 4.3.7 of Guideline for the NSW Site Auditor Scheme 3rd Edition (NSW EPA 2017) states that:

"...site auditors must have regard to the provisions of the NSW Government's framework for managing wastes. In New South Wales, it is an offence to transport waste to a place that cannot lawfully receive it, or use a site to receive waste that cannot lawfully be used as a waste facility. To ensure that waste generators (or their representatives) do not trigger such offences:

- In relation to disposal, they must ensure their waste is carefully classified in accordance with the Waste Classification Guidelines Part 1: Classifying Waste (EPA 2014) as in force from time to time (the 'Waste Guidelines', available from Waste classification guidelines: www.epa.nsw.gov.au/your-environment/waste/classifying-waste/waste-classificationguidelines), and the waste is taken to a facility that is lawfully able to receive that waste; and
- In relation to re-use for land application purposes, they must ensure their waste meets the requirements of the resource recovery order and resource recovery exemption framework."

13.10 ONSITE MATERIALS TRACKING

Materials excavated and transported from one area of the site to another should be tracked in order to provide detailed and accurate information about the location and quantity of all materials. The following information should be recorded for material.

- Origin of material on the site;
- material type and description;
- approximate volume (m³);
- time and date of excavation and transport; and
- Location of the material reuse onsite.

13.11 SOIL OFF-SITE DISPOSAL

Following receipt of waste classification results, the total volumes of stockpiled material for offsite disposal will be transported by a licenced transporter to an appropriately licensed facility for disposal. Prior to the disposal of waste materials from the site, the remediation contractor will seek written approval from the receiving facility to accept the waste.

13.12 ONGOING MONITORING/ MANAGEMENT

The preferred remediation approach is designed to treat contaminated material, remove contaminated materials from the site and dispose at a licenced facility or contain contaminated materials to prevent exposure of future site users to the contaminants, such that there remains no risk to human health. If this approach is validated as successful, the requirement for on-going monitoring or management to ensure continued protection of human health and the environment will not be required.

If the preferred remediation approach is unsuccessful and the contingency approach of onsite encapsulation is required (refer to Section 13.15), then ongoing management in the form of an EMP is required.

13.13 SITE REINSTATEMENT

Imported materials may be required to reinstate some of the excavated areas, excavations will be backfilled with imported virgin excavated natural material (VENM) or Excavated Natural Material (ENM) as defined in the NSW EPA general resource recovery order "The Excavated Natural Material Order 2014". All material must be certified as suitable for the intended use.

VENM/ENM sourced from a quarry or other supplier, should either be accompanied by a certified letter stating that the material is VENM/ENM or ideally come with chemical certification by means of confirmatory validation data from the source site. It may also be prudent for the environmental consultant supervising the works to visit the source site to assess the potential for contamination.

Observations will be made by the consultant during importation/use to confirm that the material is consistent with the documentation. Geotechnical considerations with respect to backfilling (drainage of the material, compaction, density) should be taken into account by the remediation contractor (with the possibility of engaging a suitably qualified geotechnical consultant to provide advice on backfilling specifications).

During the importation of validated fill material for site reinstatement, if needed, receipts and dockets will be provided by the supplier of the material for every truck or load of material that is trucked into site. These dockets will also need to be kept on file as part of the remediation documentation.

Landscaping soil and garden mixes are an exception to the requirement of VENM due to their processed nature. This material would need to be approved on a case by case basis prior to being used on site and provision of any compliance certificates, product information sheets and the preparation by a reputable landscape supplier. Laboratory testing will be required at the discretion of the Site Auditor and environmental consultant on site.

13.14 REMEDIAL CONTINGENCIES

The proposed remedial option should be effective in dealing with the identified impacts, however contingency strategies may be required in the event of certain scenarios. Anticipated potential remedial contingencies are detailed in Table 13.

Table 13: Remedial Contingencies

Potential issues	Proposed Corrective Actions	Responsible Person	Communication and Additional Sampling/Monitoring
Excavation becomes unmanageable due to mud	Improve drainage collection system; add geotextile/gravel in problem areas; strip off mud/slurry materials. Drains, gutters, roads and access ways shall be maintained free of sediment. Site personnel or dedicated site manager to remain vigilant of breaches of sediment controls.	Remediation contractor	Advise site manager of potential breaches. Breaches are to be recorded in the daily site log and provided to the Client and the appointed environmental consultant or site environmental officer. No additional monitoring/sampling required unless stormwater drains are inundated with evidence of contaminated materials from site.
Excessive stormwater runoff in drains or excavation areas	Minimise active contaminated work area; improve stormwater diversion. Check control measures are adequate to prevent surface water runoff entering and leaving excavation and stockpile areas. Temporary bunding or diversion drain, impermeable sheeting placed under stockpiles, silt fences/hay bales surrounding stockpiles and protect existing drains with silt/sediment mats or bunds. Regularly inspect drains to ensure that they are protected from runoff.	Remediation contractor to contact Environmental consultant to test any accumulated water.	Breaches are to be recorded in the daily site log and provided to the Client and the appointed environmental consultant. No additional monitoring/sampling required unless stormwater drains are inundated with evidence of contaminated materials from site. Water accumulated in excavations to be sampled by environmental consultant for applicable contaminants of concern. Management/disposal options to be formulated based on analytical results.
Excessive dust	Use water sprays or water fogging equipment; stop dust-generating activity until better dust control can be achieved or apply interim capping systems on stockpiles or exposed material. Stop work in high wind conditions.	Remediation contractor	Breaches are to be recorded in the daily site log. Monitoring/sampling required where removal of asbestos is occurring in accordance with licenced asbestos removalist's asbestos control plan.
Heavy rain, wind, or inclement weather	Temporarily stop work. Ensure site security is stable. Ensure sediment and surface water controls are operating correctly. If possible, divert surface water away from active work areas or excavations. Cover stockpiles with tarp and weights.	Remediation contractor	None.
Equipment failures	Maintain spare equipment or parts; keep rental options available or shut down affected operations until repairs are made. Clean up	Remediation contractor	Sample any impacted stockpiled materials (TRH, BTEX compounds and PAHs) and determine appropriate disposal/treatment option

Potential issues	Proposed Corrective Actions	Responsible Person	Communication and Additional Sampling/Monitoring
	the spill with absorbent material. Stockpile the impacted material in a secure location.		based on an assessment of analytical results.
Unexpected contamination findings (such as areas of fly tipping or potentially contaminated fill)	Stop work immediately and consult with a specialist as to appropriate management options. Further details are included in Unexpected Finds Management Plan Appendix A.	Remediation contractor	Sampling and laboratory testing of potentially contaminated material to determine appropriate management options based on an assessment of analytical results. Analyses may include heavy metals, TRH, BTEX compounds, PAHs, and asbestos (as required).
Neighbour or community complaints	Stop works and implement control measures to address complaint (if possible).	Remediation contractor	Coordinate a community consultation process prior to and during the works. Notify relevant Project Managers following complaint. Report complaint as per Client management procedures.
Selected remedial options are not effective	It is anticipated that the proposed RAP will be effective in dealing with the on-site impact, however, alternative remedial methods will be identified and applied, in consultation with the Client and other stakeholders, as appropriate.	Remediation contractor	Unidentified impacts at the site will need additional sampling to assess appropriate remedial action.

13.15 CONTINGENCY REMEDIATION METHOD - ONSITE ENCAPSULATION

In the event that ground conditions or concentrations of contaminants mean that offsite disposal is not economically or practically feasible, an alternative option for remediation is on-site encapsulation, as described below.

Onsite encapsulation comprises retention of impacted soils onsite in an area where access to the soils is limited by physical barriers and administrative controls. Due to the specifics of the proposed development, the most suitable location of encapsulation of impacted soils is considered to be below the basement slab and would be achieved by over-digging the basement excavation and placing the relevant material in a containment cell underneath the basement slab. This remediation method is considered likely to suitable for TRH, PAH, copper, lead, and zinc impacts. This method is not considered suitable for the aldrin and dieldrin impacted soils.

The procedure for onsite encapsulation is as follows:

• Undertake leachability assessment of the impacted soils (this assessment can also be undertaken ex situ while materials are stockpiled onsite);

- The targeted areas for offsite disposal are set out onsite as presented in Figure 4;
- The area is excavated to the target depth, with soils stockpiled onsite;
- Following excavation of the impacted soils, validation of the excavation should be carried out in accordance with Section 14.
- Basement excavations are completed with the excavation extended to a sufficient depth to allow for the placement of the impacted soils below the designed base of slab;
- Impacted soils are placed at the base of the excavation, subject to suitable geotechnical controls such as compaction and level 1 supervision;
- A marker layer is placed over the contaminated material; and
- A suitable Environmental Management Plan is prepared to document the administrative controls required to minimise the risk of exposure to the impacted soils.

14 VALIDATION PLAN

Validation sampling is to be undertaken following removal of impacted or contaminated soils during the site bulk excavation to ensure that the horizontal and vertical extent of impacts are removed. Sampling is to be conducted in accordance with relevant NSW EPA guidance to confirm whether the identified contamination has been adequately removed from the excavated areas and whether any further remediation is required.

As groundwater remediation is not required, groundwater validation is not required.

Based on the soil results to date for the site, the contaminants of potential concern (COPC) are identified as:

- Fill soils:
 - Human Health: benzo(a)pyrene TEQ, OCP (aldrin and dieldrin), and lead.
 - Ecological Health: TRH >C16-C34, benzo(a)pyrene, copper, lead, and zinc.

Based on the COPC identified in the previous PSI (CES 2019a) and this investigation, natural soil/bedrock samples (noting all remediation areas are to be excavated to the fill/natural soil interface) will be collected from the base of excavations and analysed for:

- TRH;
- PAHs;
- OCP; and/or
- Common metals and metalloids.

Excavation sidewall samples will be assessed for the COPC applicable to the remediation area if they are present after excavation

14.1 VALIDATION SAMPLING

Validation sampling should be carried out in the areas targeted for remediation as outlined below.

14.1.1 Excavated Areas

A systematic and judgemental sampling regime will be adopted for validation of areas where impacted soils (as defined in Figure 4) have been removed by excavation.

Following excavation of impacted areas, the walls and base of each excavation area will be field screened and documented for the following characteristics:

- visual and olfactory evidence of impact;
- spatial relationship to known impacts; and,

• geologic or hydrogeological evidence of preferential pathways.

Systematic grid-based samples retrieved in-situ will be collected from the walls and base of excavations and analysed at a frequency of one sample per 25 m^2 and increased depending on field observations. Judgemental samples will also be collected where distinct soil differences occur.

If validation samples detect contaminants in excess of the site assessment criteria, additional material will be excavated and treated, until the area can be successfully validated.

14.1.2 Fill Stockpile Areas

If the material from excavated areas is stockpiled onsite and placed on areas that are not sealed or prepared with a suitable geofabric liner (HDPE or similar) validation of the footprint of the stockpiled material will be required. Validation should be undertaken in a similar manner to excavated areas. Analysis of these stockpile footprints would be at a frequency of 1 sample per 25 m^2 . Judgemental samples will also be collected where distinct soil differences occur. Samples will be analysed for the contaminants of concern relevant to the stockpiled materials.

14.1.3 Waste Classification

For remediation areas requiring off-site disposal of soils the following chemical contaminants should be analysed in accordance with the *Waste Classification Guidelines: Part 1 Classifying Waste*, (NSW EPA 2014):

- Heavy Metals;
- PAH;
- Moderately harmful pesticides list in table 1 of waste classification guidelines;
- TRH;
- BTEX; and
- Scheduled chemicals list in table 1 of waste classification guidelines.

14.1.4 Imported VENM

Importation of VENM is not considered likely to be required at the site.

If required VENM, sourced from a quarry or other supplier, should either be accompanied by a certified letter stating that the material is VENM, and ideally be accompanied by analytical data from the source site.

An environmental consultant should undertake an inspection of the source of the material, and if necessary complete sampling of the material, to assess potential for contamination. Observations will be made by the consultant during importation/use to confirm that the material is consistent with the documentation.

Geotechnical considerations with respect to backfilling (drainage of the material, compaction, density) should be taken into account by the remediation contractor (with the possibility of engaging a suitably qualified geotechnical consultant to provide advice on backfilling specifications).

During the importation of validated fill material for site reinstatement, receipts and dockets are to be provided by the supplier of the material for every truck or load of material that is trucked into the site. These dockets will also be required to be kept on file as part of the site reinstatement documentation.

14.1.5 Imported ENM

Where ENM is to be imported to the site for use as backfill, the material should be sampled and assessed in accordance with the NSW EPA Resource Recovery Order, ENM Order 2014 prior to being imported to the site.

14.1.6 Imported Material Validation

Any VENM or ENM imported to site for use must be accompanied by suitable documentation to demonstrate that the material meets with the classification of VENM or the ENM General Resource Recovery exemption issued by the NSW EPA. Fill that is not accompanied by adequate certification shall be rejected from Site.

Prior to and following placement, the imported material will be inspected for any visual signs of contamination, foreign material or variations in material type to that expected from the source site. The inspection will include:

- Inspection for obvious sign of contamination or unacceptable characteristics including odours, discolouration, waste materials (slag, ash, building wastes, containers, rubbish) and potential asbestos containing materials (including fibro, cement pipes and compressed cement sheeting); and
- Confirmation that the material is what is expected from the source site (e.g. ripped sandstone, shale, clay soil etc).

Any material exhibiting signs of contamination or that is not the expected material will be rejected. To confirm the suitability of the material for use on-site from a contamination perspective, ongoing validation testing of the material imported to the site will be undertaken.

The validation testing will involve as a minimum:

• Collection of a minimum of three samples per VENM source site under 15,000m3 or one sample per 5,000m3 for source sites where greater than 15,000m3 will be sourced of VENM imported to the site; and

• Laboratory analysis of the material at a NATA registered laboratory for a suite of common contaminants including heavy metals;TPH; BTEX, PAH, OCP, and asbestos.

The results will be compared to the SAC applicable to the area of the site.

Where an imported material does not meet the SAC, the material should be considered unsuitable and rejected from site.

14.1.7 Method of Sample Collection

Care will be taken to ensure that representative samples are obtained and that the integrity is maintained, particularly when dealing with potentially volatile or semi-volatile compounds. Specific sampling procedures for each method of collection are provided below in following sections.

14.1.8 Sample Collection

Samples will be collected using either a decontaminated stainless steel trowel or by using new nitrile gloves for each sample and placing the soil directly into laboratory supplied containers.

14.1.9 Decontamination Procedures

The following decontamination procedures will be adopted for sampling equipment.

14.1.10Sampling Equipment

Sampling equipment, such as trowels, will be washed between sampling events using Decon 90 (or similar laboratory grade detergent) initially followed by adequate rinsing with clean potable and de-ionised water. To check the adequacy of the decontamination protocol, rinsate samples will be collected for analysis.

14.1.11Sample Containers

Soil sample containers will comprise glass or plastic containers, as required, supplied by either the primary or secondary laboratory. The containers will be completely filled leaving no headspace, labelled with the job number, date, unique sampling point identification and initials of the project environmental scientist/engineer.

14.1.12Method of Sample Storage and Handling

The samples will immediately be placed in an esky / cool box in which ice has been added, to keep the samples below a temperature of approximately 4°C. At the end of each day, the samples in the cool box will be transported to laboratory (within holding times).

14.1.13Sample Logging

A log of excavation works and soil/groundwater samples collected will be completed during fieldwork by a qualified environmental engineer/scientist. The log records the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, odour and moisture content;
- Depth of excavation;
- Excavator bucket refusal;
- Method of excavation; and
- The depth of first encountered free water.

14.1.14QA / QC Documentation

While on site, the supervising engineer/scientist will be required to fill out a copy of a 'sample register', which documents:

- Time of sample collection;
- Weather;
- Unique sample identification number; and
- Sample location and depth.

All samples will be classified in the field based on soil/fill/groundwater characteristics and obvious signs of contamination such as discolouration or odour will be noted on a log.

All samples, including QC samples, will be transported to the primary and check laboratories under Chain-of Custody (COC) procedures and maintained in an ice-filled cooler. The following details will be recorded on the COC form:

- Site identification;
- The sampler;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s).

14.2 FIELD SCREENING

Although not anticipated, where volatile contaminants are encountered, field screening will be undertaken to screen potentially contaminated material being removed from the excavations for the presence of volatile compounds. Field screening will be conducted using a Photo-Ionisation

Detector (PID) or similar instrument capable of measuring Volatile Organic Compounds (VOCs) in air.

The instrument will be operated using the controlled headspace method in accordance with a documented procedure by appropriately trained persons. Full documentation will be provided relating to the calibration of the instrument, the samples analysed, gas screening results and site observations. These results will be compiled and presented in the validation report.

The presence of elevated levels of VOCs in imported material will result in that batch of material being rejected.

14.3 QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM (QA/QC)

The proposed field and laboratory QA/QC programme for this project is consistent with ASC NEPM (NEPC 2013)requirements. The programme consists of the following:

- Laboratory blind replicates at 1 in 20 (5 %) samples or one per batch; and
- Split samples (intra-lab duplicates) at 1 in 20 (5 %) samples or one per batch.

14.3.1 Field QA/QC Programme

Field QA/QC consists of the application of documented quality work procedures and the collection of field QC samples listed above.

14.3.1.1 Environmental Samples

The environmental samples collected for the validation programme are representative samples of soil/groundwater collected for analysis. Environmental samples are the original samples taken from a particular location and other samples are blind replicates or split samples of the original.

14.3.1.2 Blind Replicate Samples

Blind replicate samples are provided by the collection of two similar samples from the same location or successively from the same monitoring bore. These samples are preserved, stored, transported, prepared and analysed in an identical manner to environmental samples.

14.3.1.3 Split Samples

Split samples provide a check on the analytical proficiency of the laboratories. Split samples are collected from the same location or successively from the same monitoring bore. Split samples must be taken from the same location as the blind replicate, thus becoming a triplicate sample. However, split samples are not taken as often as blind replicates. Split samples (triplicates) are preserved, stored, transported, prepared and analysed in an identical manner to environmental samples, but are sent for testing to a different laboratory.

14.3.1.4 Trip Spike

Laboratory-prepared VOC spikes consisting of distilled, de-ionised water or sand spiked with known concentrations of BTEX should be included in QA/QC programmes where light fraction TPH, BTEX and other VOCs concentrations are being measured. Laboratory-prepared VOC spikes should be included at a rate of one per sample batch submitted for VOC analysis. These samples are to be submitted for BTEX analysis with resulting concentrations compared with the concentrations of the known additions. Generally, samples are spiked with concentrations of 10, 10 and 30 ppm of benzene, toluene, ethylbenzene and total xylenes, respectively. The purpose of these samples is to monitor VOC losses during transit.

14.3.1.5 Trip Blank

Trip blanks consisting of pre-washed bottles containing distilled or de-ionised water and appropriate preservatives or laboratory-prepared sand blank containing acid-washed quartz sand will be supplied by the analytical laboratory. The role of trip blanks is to detect potential contamination during sample transport. These samples reside in transport vessels during sampling activities and are not opened in the field. Typically, one trip blank is submitted with each batch of samples for VOC analysis. Trip blanks are analysed at the laboratory as regular samples or only for volatile organic compounds, as deemed appropriate.

14.4 VALIDATION REPORTING

Following the remediation and validation works, a validation report will be prepared in accordance with the NSW EPA (2020) *Guidelines for Consultants Reporting on Contaminated Sites*. The validation report will detail the extent and nature of the remedial works undertaken, characterisation and disposal of contaminated soils, the validation of imported clean fill and topsoil (if any) and will consider the overall status of the site.

The report will include the following sections:

- executive summary;
- scope of works and objectives;
- site identification;
- site history;
- site conditions and surrounding environment;
- geology and hydrogeology;
- previous investigation results;
- summary of the RAP;
- validation criteria;
- nature and extent of the remediation undertaken;
- sampling and analysis plan and sampling methodology;

- field and laboratory QA/QC;
- results of the validation sampling and sampling of imported fill materials;
- information supplied by the remediation contractor (such as waste disposal documentation);
- discussion of the land use suitability at the completion of remedial works; and,
- conclusions.

It should be noted that to enable the validation report to be produced, the remediation contractor will be required to supply the following to the environmental consultant:

- the quantities and types of waste disposed;
- details of the receiving facility/facilities accepting waste from the site;
- disposal dockets for the waste disposed;
- details of any imported materials (including VENM certification, laboratory results, origin and supplier, exemption details, quantities and areas of placement), survey data (including surveys of excavations and following backfilling works).

15 WORK HEALTH AND SAFETY

All works conducted at the site as part of the remediation or site excavation process will comply with the Work Health and Safety Act 2011 and associated Regulations.

The remediation contractor will prepare a work health and safety (WHS) plan that outlines the risks and control measures of site remedial works. The plan should cover site specific requirements associated with the asbestos and PAH's contamination known to be present within fill and natural soils at the site.

The environmental consultant will prepare a WHS Plan for the sampling works it will undertake.

Typically, the WHS plan should address the following issues:

- regulatory requirements;
- responsibilities hazard identification and control;
- air monitoring (including action levels) during excavation and construction (if necessary);
- noise;
- odours;
- chemical hazard control;
- handling procedures;
- personal protective equipment (PPE);
- work zones;
- decontamination procedures;
- emergency response plans;
- contingency plans; and
- incident reporting.

The plan should include emergency contact numbers such as police, fire brigade, hospital and contact details for all relevant personnel. Response to any incidents occurring on site should be in accordance with the plan. The plan should include an Induction and Tool Box Discussion Register.

All those working or visiting the site should be inducted into the plan.

16 SITE MANAGEMENT PLAN

16.1 HOURS OF OPERATION

Remediation work hours will only be permitted during the following times, subject to Council approval:

•	Monday to Friday:	7:00 am to 6:00 pm
•	Saturday:	8:00 am to 1:00 pm.

• Sundays or Public holidays: No work permitted.

Emergency work is permitted outside of these hours.

16.2 SITE SIGNAGE AND CONTACTS

Signage will be installed on the site, with direction to key areas (including to decontamination units, wash down areas, exits, etc.) and traffic restrictions. Signage at the main access points will include after-hours contact details of the remediation contractor and site manager.

16.3 SITE ACCESS

Transport of materials to and from site will need to consider traffic management options which take into account the size of the site and any access restrictions to the site. The site access and exit roads are to be monitored for spillage and tracking from the site and are to be kept clean with street sweeper following waste removal off-site.

During the remediation works, perimeter fencing will be erected to restrict public access to the work area. Only authorised personnel will be permitted to enter the remediation works area.

Vehicle access will be managed at the entry access point to the site to reduce the tracking of potential contaminated soils around and off-site. This shall be achieved by sweeping the entry on an as-needed basis. Any collected material shall be treated as contaminated material and will be disposed of as required.

16.4 SEDIMENT AND RUNOFF MANAGEMENT

A soil and water management plan must be implemented for the control of sediments and runoff leaving or entering the site. All control measures must be installed in accordance with Managing Urban Stormwater: Soil and Construction Volume 1, 4th Edition, NSW Government, March 2004. In the event excavated materials may be required to be stockpiled on site, the material will be required to be stockpiled in a designated location and covered to prevent dust emissions or washout during potential rainfall events. Methodology for stockpiling of materials on-site is provided in this RAP.

Drainage and sediment erosion control is required to mitigate the potential for:

• Migration of clean and impacted soil off-site and across the site itself; and

• Migration of clean and impacted surface water and groundwater off-site and across the site itself.

Migration of clean or impacted soil off-site can increase the sediment load in receiving waters and storm water drains, while impacted soils may also release contaminants into these environments. Migration of impacted surface and/or groundwater off-site may result in the release of contaminants into sensitive receiving waters or public utilities (sewer or storm water). Migration of impacted soil, surface water or groundwater across the site may also lead to re-contamination of remediated portions of the site.

Uncontrolled migration of clean surface water across the site may cause erosion and result in transport of soil and sediment off-site. Drainage and erosion controls to be implemented may include the following:

- Hay-bale and geofabric fences to control soil erosion;
- The use of silt/sediment mesh to control surface water run-on or run-off. Where possible, clean run-off should be diverted around the site to minimise the volume of water requiring management; and
- Temporary bunding.

These sediment control features may be placed around:

- The individual site boundaries (up, across and down gradient);
- Soil stockpiles (if created);
- Excavation areas; and
- Stormwater drains.

Appropriate regulatory and utility permits will be required to allow disposal of run-off to either the stormwater or the sewer. Review of the permitting regulations will need to be done with the local authority and/or water authority managing the sewer (storm and sewerage) network.

16.5 AIR QUALITY

16.5.1 Dust Control

The greatest potential for dust generation may occur during soil treatment or excavation, stockpiling and reinstatement works. Control procedures for the site should be implemented on an as needed basis and could include the following:

- Use of hand held water sprays or hoses to dampen exposed soil and fill surfaces. However, it is important to recognise that there is an environmental risk associated with the generation of excessive and / or contaminated run-off and this should be managed accordingly;
- Stockpiling material in small stockpiles;

- Covering stockpiles; and
- Staging works to take advantage of the prevailing winds to minimise the impact of dusts.

16.5.2 Odour

Odour is not anticipated be an issue at the site during the excavation and remediation works however if required odour issues can be mitigated by covering of soils, and mist sprays/odour suppressants at site boundaries.

The following measures are generally used to mitigate odour, if generated:

- Minimise working area within odorous soils;
- All stockpiles will be covered to prevent odour dispersion and potential off gassing;
- Excavation works should take advantage of the prevailing winds to minimise the dispersal of nuisance odours to any neighbouring properties; and
- Use of odour suppressant such as Biosolve or suitable alternative may be applied to stockpiled excavated material to reduce odour.

16.5.3 Potential Vapour Exposure in Subsurface Areas

Occupational health and safety requirements must be met to prevent exposure from impacted soil and / or groundwater during excavation and soil management works. It is not anticipated that soils impacted by volatile contaminants will be encountered, however if encountered the risks to site workers should be managed as outlined below.

Prior to excavation works, or access to utility pits, control measures to protect against exposure to vapour inhalation should be implemented. These measures might include but are not limited to:

- Using a photo-ionisation detector (PID) in the operator breathing zone;
- Setting PID action levels;
- Using respirators or implementing ventilation measures if action levels are exceeded; and
- Stopping work and accessing methods of eliminating vapour exposure.
- Assessment of confined spaces on-site and in nearby off-site utility pits or other sub-surface structures is to be done only by appropriately trained and accredited confined space personnel.

Occupational health and safety requirements under NSW legislation or industry codes of practice must be met for entry into confined spaces such as trenches during future building works.

16.5.4 Noise

The remediation works shall comply with the NSW EPA Draft Construction Noise Guideline (2020).

16.6 ASBESTOS MANAGEMENT

Investigations did not detect ACM or asbestos fibres in samples collected from fill materials in extensive sampling and analysis undertaken at the site.

If asbestos is found in site soils during the further investigations or during the site works the following should be considered in order to manage the risks associated with asbestos

The works associated with the remediation and management of asbestos and asbestos contaminated soils should carried out in accordance with the relevant legislation including:

Legislation/Regulation	Key Project Requirements
Protection of the Environmental Operations	Undertake all activities so as to minimise harm
Act 1997 (POEO Act) and Regulations	to the environment with regards to asbestos
Protection of the Environment Operations	Requirements in relation to transportation,
(Waste) Regulation	collection, storage or disposal of asbestos
	waste.
Environmental Planning and Assessment Act	Compliance with development consent
1979	conditions issued by the Consent Authority to
	manage effects on the environment.
National Environment Protection (Assessment	Compliance with the new ASC NEPM (NEPC
of Site Contamination) Measure 1999 (as	2013) guidelines and the referenced
amended 2013)	documentation – in particular Western
	Australia Department of Health – Guidelines
	for the Assessment, Remediation and
	Management of Asbestos-Contaminated Sites
	(GARMACS) in Western Australia, May
	2009.

And, as appropriate:

- Work Health and Safety Act 2011.
- Work Health and Safety Regulation 2011.
- Safework NSW How to Safely Remove Asbestos, Code of Practice (2019).
- Safework NSW How to Manage and Control Asbestos in the Workplace, Code of Practice (2019).
- Safework NSW How to Manage Work Health and Safety Risks, Code of Practice (2019).
- Australian Standard AS 1319-1994, Safety Signs for the Occupational Environment; and
- Australian Standard AS 31000:-2009, Risk Management.

Specific legislative requirements also referred to in this RAP are:

- The Work Health and Safety Act requires all persons who conduct a business or undertaking (PCBU) to ensure that, as reasonably practicable, workers and other persons are not put at risk from work carried out as part of the business or undertaking.
- The PCBU must undertake a risk assessment of asbestos containing materials and eliminate the exposure of persons at the workplace from airborne asbestos. The exposure standard for asbestos must not be exceeded. Air monitoring must be carried out during the removal of friable asbestos.
- All forms of asbestos are a prohibited carcinogenic substance. The use of asbestos containing materials is prohibited apart from the purpose of sampling and analysis, maintenance, removal, disposal, encapsulation or enclosure.
- A Class B licence is required for removal of the bonded ACM, where the quantities exceed 10m².
- A Class A licence is require for removal of friable asbestos and quantities over 10 m².
- The PCBU must provide health monitoring to a worker if they are involved in asbestos removal work and is at risk of exposure to asbestos when carrying out the work.
- Excavated soil found to contain asbestos during the bulk earthworks will be removed from site by an appropriately licensed asbestos removal contractor and disposed of in accordance with current NSW EPA guidelines and relevant industry codes of practice.
- Asbestos waste is a trackable waste in accordance with NSW EPA guidelines and must be tracked in accordance with NSW EPA requirements.

17 SUMMARY AND RECOMMENDATIONS

This RAP has been prepared to manage contamination at the Site and to make the Site suitable for the proposed residential aged care facility.

Successful implementation of the RAP should render this site suitable for the proposed development.

Based on the remedial options assessment, the applicable and preferred remedial option for the COPCs is: Excavation, transport, and disposal of impacted soils at the site to a suitably licensed facility.

Remediation works should be carried out in accordance with Sections 11 to 16.

Contingency measures for remediation, site management, and unexpected finds are detailed within this RAP.

It is noted that all excavations at the site must be undertaken in accordance with a suitable Construction Environment Management Plan to mitigate risks to workers and the public during earthworks at the site.

18 LIMITATIONS OF THIS REPORT

This report has been prepared for use by the client who commissioned the works in accordance with the project brief and based on information provided by the client. The advice contained in this report relates only to the current project and all results, conclusions and recommendations should be reviewed by a competent person with experience in geotechnical and environmental investigations before being used for any other purpose. CES accepts no liability for use or interpretation by any person or body other than the client. This report must not be reproduced except in full and must not be amended in any way without prior approval by the client and CES.

This report does not provide a complete assessment of the environmental status of the site and is limited to the scope defined therein. It is noted that areas of the site could not be investigated due to the presence of structures including the residential property and presence of ponds. Should information become available regarding conditions at the site including previously unknown sources of contamination, CES reserves the right to review the report in the context of the additional information.

19 REFERENCES

CES (2019a) *Preliminary Site Investigation, 11-19 Frenchmans Road, Randwick NSW 2031*, dated 25 November 2019 (CES document reference: CES190901-FRE-AB).

CES (2019b) *Geotechnical Investigation Report, 11-19 Frenchmans Road, Randwick NSW 2031*, dated 2 December 2019 (CES document reference: CES190901-FRE-AC).

Geological Survey of New South Wales (1991), Penrith 1:100 Geological Sheet Series 9030. Edition I, New South Wales Department of Mineral Resources, Sydney.

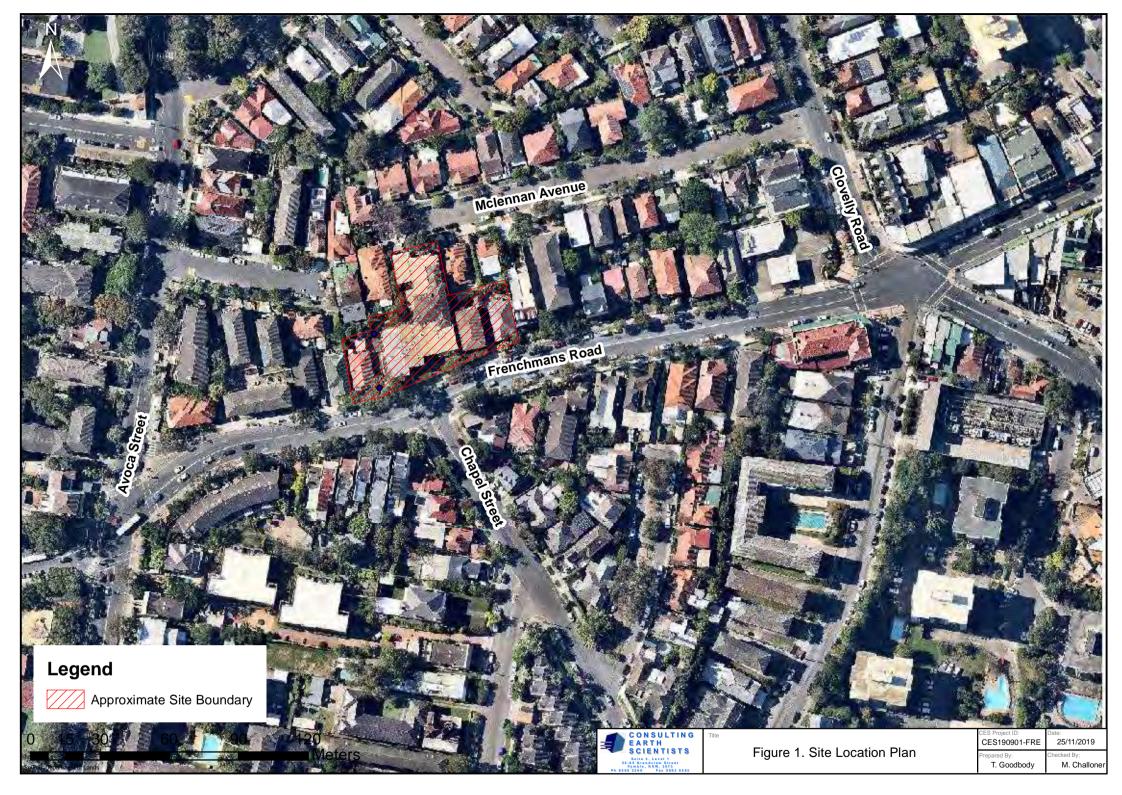
ASC NEPM (NEPC 2013). National Environment Protection (Assessment of Site Contamination) Measure. *Schedule B(1) Guideline on Investigation Levels For Soil and Groundwater*.

ASC NEPM (NEPC 2013). National Environment Protection (Assessment of Site Contamination) Measure. *Schedule B(2) Guideline on Site Characterisation*.

NSW EPA 1995, Contaminated Sites: Sampling Design Guidelines.

NSW EPA 2004. Chemical Control Order in Relation to Scheduled Chemical Wastes.

NSW EPA 2014: *Waste Classification Guidelines, Part 1: Classifying Waste*. EPA 2014, Environment Protection Authority of New South Wales.


NSW EPA 2017, Contaminated Land Management, Guidelines for the NSW Auditor Scheme (3rd Edition).

NSW EPA 2020: *Guidelines for Consultants Reporting on Contaminated Sites*. EPA 97/104, Environment Protection Authority of New South Wales.

Western Australia, Department of Health 2009 Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.

Figures

BH11 BH8 Benzo(a)Pyrene - 5.9 mg/kg TRH >C16-C34 - 370mg/kg Benzo(a)Pyrene TEQ - 8.4 mg/kg Benzo(a)Pyrene - 4.6mg/kg Copper - 140 mg/kg BH8 Benzo(a)Pyrene TEQ - 6.6mg/kg Lead - 2,100 mg/kg Lead - 2,200mg/kg Zinc - 430mg/kg BH10 RH4 BH10 TRH >C16-C34 - 700 mg/kg BH4 Benzo(a)Pyrene - 4.6 mg/kg BH5 Benzo(a)Pyrene - 1.2mg/kg Benzo(a)Pyrene TEQ - 6.5 mg/kg Lead - 1,300mg/kg BH9 TRH >C16-C34 - 1,900 mg/kg Aldrin - 440 mg/kg Dieldrin - 13 mg/kg BH3 BH1 BH6 BH6 TRH >C16-C34 - 410mg/kg Benzo(a)Pyrene - 2.1mg/kg BH7

Legend

Approximate Site Boundary

Borehole

BH

Figure 3. Assessment Criteria Exceedance Plan

CONSULTIN EARTH SCIENTISTS CES Project ID: Date: CES190901-FRE 12/05/21 Prepared By: Checked By; A. Carras T. Goodbody

Tables

Table 14: Summary of Analysis res	ults and C	omparison	n to Tier 1 Screen	ing Criteria						_							_		
		Lab Report	HIL B/HSL D		EIL/ESL Urban	230559	230559	230559	268144	268144	268144	268144	268144	268144	268144	268144	95% Upper		
		Job # Sample	High Density Residential (0-<1m	HIL C/HSL C Recreational	residential and Public Open	Frenchmans Roa BH1	Frenchmans Roa BH2	Frenchmans Roa BH3	Frenchmans Roa BH4	E Frenchmans Roa BH5	Frenchmans Roa BH6	Herenchmans Roa BH7	Frenchmans Roa BH8	Frenchmans Roa BH9	Frenchmans Roa BH10	BH11	Confidence Limit conducted	Mean	Standard
		Depth	Sand) including	Areas	Space (coarse	0.5	0.5	1.5	0.15	0.15	0.15	0.05	0.15	0.15	0.15	0.15	on HIL/HSL	ivicali	Deviation
		Date Sampl	basement parking		soils)	07/11/2019	06/11/2019	06/11/2019	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	exceedances		
TRU CC. CO	Units	PQL		1		25	25	25	25	25	25	25	25	25	25	25	57/A	27/4	27/4
TRH C6 - C9 TRH C6 - C10	mg/kg mg/kg	25 25	-	-	-	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	N/A N/A	N/A N/A	N/A N/A
vTPH C6 - C10 lessBTEX (F1)	mg/kg	25	260	45	180*	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	N/A	N/A	N/A
Benzene	mg/kg	0.2	3	0.5	50	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	N/A	N/A	N/A
Toluene	mg/kg	0.5	NL	220	85	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	N/A	N/A	N/A
Ethylbenzene m+p-xylene	mg/kg mg/kg	2	NL -	55	70	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	N/A N/A	N/A N/A	N/A N/A
o-Xylene	mg/kg	1	-	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	N/A N/A	N/A	N/A N/A
naphthalene	mg/kg	1	NL	3	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	N/A	N/A	N/A
Total +ve Xylenes	mg/kg	3	230	40	105	<3	<3	<3	<3	<3	<3	<3	<3	-3	<3	<3	N/A	N/A	N/A
TRH C10 - C14	ma/ka	50				<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	N/A	N/A	N/A
TRH C15 - C28	mg/kg mg/kg	100	-	-	-	<50 <100	<50 <100	<100	<50 <100	<50 <100	<50 280	140	270	980	430	<100	N/A N/A	N/A N/A	N/A N/A
TRH C29 - C36	mg/kg	100	-	-	-	<100	<100	<100	<100	<100	200	180	130	1100	360	120	N/A	N/A	N/A
TRH >C10-C16	mg/kg	50	-	-	-	<50	<50	<50	<50	<50	53	<50	<50	<50	<50	<50	N/A	N/A	N/A
TRH >C10 - C16less Naphthalene (F2) TRH >C16-C34	mg/kg	50 100	NL	110	120* 300	<50 <100	<50 <100	<50 <100	<50	<50 <100	53 410	<50 270	<50 370	<50 1900	<50 700	<50 120	N/A 801.8	N/A 365.5	N/A 551
TRH >C10-C54 TRH >C34-C40	mg/kg mg/kg	100	-	-	2800	<100	<100	<100	<100 <100	<100	150	130	<100	370	230	<100	801.8 N/A	365.5 N/A	N/A
Total +ve TRH (>C10-C40)	mg/kg	50	-	-	-	<50	<50	<50	<50	<50	610	400	370	2300	930	120	N/A	N/A	N/A
Naphthalene	mg/kg	0.1	-	-	170	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.3	0.4	N/A	N/A N/A	N/A N/A
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.1	-	-	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.4 <0.1	0.1 <0.1	0.9 <0.1	<0.1 <0.1	1.5 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
Fluorene	mg/kg	0.1	-	-		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.5	0.1	N/A	N/A N/A	N/A N/A
Phenanthrene	mg/kg	0.1	-	-	-	0.2	< 0.1	< 0.1	0.8	0.1	0.7	0.4	2.7	0.1	5.2	4.9	N/A	N/A	N/A
Anthracene	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	0.3	<0.1	0.2	0.1	1.4	<0.1	1.9	1.8	N/A N/A	N/A N/A	N/A N/A
Fluoranthene Pyrene	mg/kg mg/kg	0.1	-	-	-	0.3	0.2	<0.1 <0.1	2	0.5	2.3 2.6	0.8	9.4 11	0.2	11 11	12 13	N/A N/A	N/A N/A	N/A N/A
Benzo(a)anthracene	mg/kg	0.1	-	-	-	0.2	0.2	<0.1	2	0.5	1.8	0.6	4.3	0.3	4	5.8	N/A N/A	N/A N/A	N/A N/A
Chrysene	mg/kg	0.1	-	-	-	< 0.1	0.1	< 0.1	1.3	0.5	1.3	0.4	5.8	< 0.1	5.8	6.3	N/A	N/A	N/A
Benzo(b,j+k)fluoranthene	mg/kg	0.2	-		-	<0.2	0.3	<0.2	2	0.8	3.2	1	7.2	<0.2	7.4	8.9	N/A	N/A	N/A
Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.05	-	-	0.7	0.1 <0.1	0.2	<0.05 <0.1	1.2 0.5	0.4 0.2	2.1	0.58	4.6	0.1 <0.1	4.6	5.9 2.9	4.463 N/A	1.8 N/A	2.188 N/A
Dibenzo(a,h)anthracene	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	0.1	<0.1	0.2	<0.1	0.5	<0.1	0.5	0.6	N/A	N/A	N/A
Benzo(g,h,i)perylene	mg/kg	0.1	-	-	-	< 0.1	0.1	< 0.1	0.8	0.3	1.2	0.3	2.3	<0.1	2.3	3.5	N/A	N/A	N/A
Total +vePAH's	mg/kg	0.05	400	300	-	0.91	1.4	< 0.05	13	3.8	17	5.5	53	0.96	58	66	N/A	N/A	N/A
Benzo(a)pyrene TEQ calc (zero) Benzo(a)pyrene TEQ calc(half)	mg/kg mg/kg	0.5	4	3	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1.8 1.8	0.5	2.9	0.8	6.6 6.6	<0.5 <0.5	6.5 6.5	8.4 8.4	5.8 5.8	2.591 2.6	3.087 3.081
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.5	4	3	-	<0.5	<0.5	<0.5	1.8	0.6	2.9	0.9	6.6	<0.5	6.5	8.4	5.8	2.609	3.075
alpha-BHC	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
HCB beta-BHC	mg/kg mg/kg	0.1	15	10	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
gamma-BHC	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Heptachlor	mg/kg	0.1	10	10	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	N/A	N/A	N/A
delta-BHC	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 440	<0.1	<0.1	N/A	N/A 40.13	N/A 132.6
Aldrin Heptachlor Epoxide	mg/kg mg/kg	0.1	6 10	10 10	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	1 <0.1	<0.1 <0.1	438 N/A	40.15 N/A	132.0 N/A
gamma-Chlordane	mg/kg	0.1	90	70	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
alpha-chlordane	mg/kg	0.1	90	70	-	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Endosulfan I pp-DDE	mg/kg mg/kg	0.1	400	340	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
Dieldrin	mg/kg	0.1	6	10	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	13	<0.1	<0.1	12.94	1.227	3.905
Endrin	mg/kg	0.1	20	20	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	N/A	N/A	N/A
Endosulfan II	mg/kg	0.1	400	340	-	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
pp-DDD Endrin Aldehyde	mg/kg mg/kg	0.1	- 20	- 20	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
pp-DDT	mg/kg	0.1	-	-	180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Endosulfan Sulphate	mg/kg	0.1	400	340	-	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	N/A	N/A	N/A
Methoxychlor Total +ve DDT+DDD+DDE	mg/kg mg/kg	0.1	500 600	400 400	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
	nig/Kg	0.1	000	400	-	NU.1	NU.1	\U.1	\U.1	\U.I	\U.I	\U.1	\.I.	NU.1	NU.1	NU.1	13/21	13/14	11/74
Dichlorvos	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Dimethoate	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Diazinon Chlorpyriphos-methyl	mg/kg mg/kg	0.1	- 340	250	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
Ronnel	mg/kg	0.1	-	- 230	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A N/A	N/A N/A	N/A N/A
Fenitrothion	mg/kg	0.1	-	-	-	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	N/A	N/A	N/A
Malathion	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Chlorpyriphos Parathion	mg/kg mg/kg	0.1	340	250	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
Bromophos-ethyl	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A N/A	N/A N/A	N/A N/A
Ethion	mg/kg	0.1	-	-	-	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	N/A	N/A	N/A
Azinphos-methyl (Guthion)	mg/kg	0.1	-			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Aroclor 1016	mg/kg	0.1	-			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Aroclor 1221	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A N/A	N/A N/A	N/A N/A
Aroclor 1232	mg/kg	0.1	-			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	N/A	N/A	N/A
Aroclor 1242	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A
Aroclor 1248 Aroclor 1254	mg/kg mg/kg	0.1	-	-	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A
Aroclor 1254 Aroclor 1260	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A	N/A N/A	N/A
Total +ve PCBs (1016-1260)	mg/kg	0.1	1	1	-	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	N/A	N/A	N/A
Arconio	/	4	500	200	100	- 4	- 4	4	4	-4	- 4	- 4	- 4	- 4	- 4	12	hT/4	hT/A	NT/A
Arsenic Cadmium	mg/kg mg/kg	4	500 150	300 90	100	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	<4 <0.4	12 0.8	N/A N/A	N/A N/A	N/A N/A
Chromium	mg/kg	1	500	300	420	<0.4 5	<0.4	<0.4	<0.4 9	<0.4	<0.4	<0.4 9	<0.4	<0.4 6	<0.4	0.8	N/A N/A	N/A N/A	N/A N/A
Copper	mg/kg	1	30000	17000	110	2	15	8	61	31	34	29	54	48	52	140	76.57	43.09	37.51
Lead	mg/kg	1	1200	600	1100	11	290	18	1300	250	360	110	2200	180	330	2100	1529	650	820
Mercury Nickel	mg/kg mg/kg	0.1	120 1200	80 1200	- 75	<0.1	<0.1	<0.1	0.2	1 4	0.2	0.1	0.7	0.2	0.2	0.7	N/A N/A	N/A N/A	N/A N/A
Zinc	mg/kg	1	60000	30000	250	44	40	56	210	4	110	100	430	61	150	670	318.3	181	196.7

Table 15: Asbestos Laboratory Analytical Results

Table 15: Asbestos Laboratory Analytical Results															
		Lab Report			230559	230559	230559	268144	268144	268144	268144	268144	268144	268144	268144
		Project Number	HSL D High Commercial	UIL C/USL C Decreational	Frenchmans Roa	1 Frenchmans Road	1 Frenchmans Road	1 Frenchmans Road							
		Sample	Industrial	Areas	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8	BH9	BH10	BH11
		Depth	Industriai	Fileas	0.5	0.5	1.5	0.15	0.15	0.15	0.05	0.15	0.15	0.15	0.15
		Date Sampled			07/11/2019	06/11/2019	06/11/2019	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
	Units	PQL													
Sample mass tested	g		-	-	440.2	247.25	283.95	461.05	473.08	367.67	387.19	299.69	Approx. 45g	533.74	476.82
				Brown sandy	Brown sandy	Brown sandy	Brown fine-	Brown fine-	Brown fine-						
Sample Description	-		-	-	soil & rocks	soil & rocks	soil & rocks	grained soil &	grained soil &	grained soil &	grained soil &				
	-							rocks	rocks	rocks	debris	rocks	rocks	rocks	rocks
					No asbestos		No asbestos	No asbestos							
					detected at		detected at	detected at	Insufficient sample		detected at				
Asbestos ID in soil	-		-	-	reporting limit	for NEPM 500mL	reporting limit of	reporting limit of							
					of 0.1g/kg:	analysis.	0.1g/kg: Organic	0.1g/kg: Organic							
					Organic fibres detected	,	fibres detected	fibres detected							
					detected										
Trace Analysis			-	-	No asbestos	No asbestos	No asbestos	No asbestos							
,	_				detected	detected	detected	detected							
Total Asbestos#1	g/kg	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
					No visible	No visible	No visible	No visible							
Asbestos ID in soil <0.1g/kg*	-	N/A	-	-	asbestos	asbestos detected	asbestos detected	asbestos detected							
					detected										
ACM >7mm Estimation*	g		-	-	-	-	-	-	-	-	-	-	-	-	-
FA and AF Estimation*	g		-	-	-	-	-	-	-	-	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	0.01	0.05	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01	< 0.01
FA and AF Estimation*#2	%(w/w)	0.001	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	•	< 0.001	< 0.001
	_														
Mass / Dimension of Sample	-		-	-	NA	NA	NA	NA							
Sample Description	-		-	-	NA	NA	NA	NA							
Asbestos ID in materials	-		-	-	NA	NA	NA	NA							
Trace Analysis	-		-	-	NA	NA	NA	NA							

Table 16: Soil QAQC Assessmen	t Results		268144	268144	ES2116624001				
			CES190901 Frenchmans Road Randwick	CES190901 Frenchmans Road Randwick	CES190901 Frenchmans Road Randwick	A. 110 110 000	Blind	A 10000 000	Split
		Sample	BH5	QS1	QS1A	Average	RPD	Average	RPD
		Depth		0.15			%		%
	Units	Date Sampled PQL		03/05/2021					
TRH C6 - C9	mg/kg	25	<25	<25	<10	N/A	N/A	N/A	N/A
TRH C6 - C10	mg/kg	25	<25	<25	<10	N/A	N/A	N/A	N/A
vTPH C6 - C10 lessBTEX (F1)	mg/kg	25	<25	<25	<10	N/A	N/A	N/A	N/A
Benzene	mg/kg	0.2	<0.2	<0.2	<0.2	N/A	N/A	N/A	N/A
Toluene	mg/kg	0.5	<0.5	<0.5	<0.5	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	1	<1	<1	<0.5	N/A	N/A	N/A	N/A
m+p-xylene	mg/kg	2	<2	<2	<0.5	N/A	N/A	N/A	N/A
o-Xylene naphthalene	mg/kg mg/kg	1	<1 <1	<1 <1	<0.5 <1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Total +ve Xylenes	mg/kg	3	<3	<3	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A
Total + to Hytones	ing, ng	5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1011	
TRH C10 - C14	mg/kg	50	<50	<50	<50	N/A	N/A	N/A	N/A
TRH C15 - C28	mg/kg	100	<100	<100	<100	N/A	N/A	N/A	N/A
TRH C29 - C36	mg/kg	100	<100	100	<100	75.000	66.7%	N/A	N/A
TRH >C10-C16	mg/kg	50	<50	<50	<50	N/A	N/A	N/A	N/A
TRH >C10 - C16less Naphthalene (F2)	mg/kg	50	<50	<50	<50	N/A 80.000	N/A	N/A	N/A
TRH >C16-C34 TRH >C34-C40	mg/kg mg/kg	100 100	<100 <100	<u> </u>	<100 <100	80.000 N/A	75.0% N/A	N/A N/A	N/A N/A
Total +ve TRH (>C10-C40)	mg/kg	50	<50	110	<50	80.000	75.0%	N/A	N/A
						001000	101070		
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.5	N/A	N/A	N/A	N/A
Acenaphthylene	mg/kg	0.1	<0.1	0.1	<0.5	0.100	50.0%	N/A	N/A
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.5	N/A	N/A	N/A	N/A
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.5	N/A	N/A	N/A	N/A
Phenanthrene Anthracene	mg/kg mg/kg	0.1	0.1 <0.1	0.2 <0.1	0.5 <0.5	0.150 N/A	66.7% N/A	0.175 N/A	228.6% N/A
Fluoranthene	mg/kg mg/kg	0.1	<0.1 0.5	<0.1 0.6	<0.5	N/A 0.550	N/A 18.2%	N/A 0.500	N/A 20.0%
Pyrene	mg/kg	0.1	0.6	0.8	0.7	0.330	28.6%	0.600	16.7%
Benzo(a)anthracene	mg/kg	0.1	0.5	0.6	<0.5	0.550	18.2%	0.375	66.7%
Chrysene	mg/kg	0.1	0.5	0.5	<0.5	0.500	0.0%	0.375	66.7%
Benzo(b,j+k)fluoranthene	mg/kg	0.2	0.8	1.0	0.6	0.900	22.2%	0.800	25.0%
Benzo(a)pyrene	mg/kg	0.05	0.4	0.7	<0.5	0.525	47.6%	0.325	46.2%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	0.2	0.4	<0.5	0.300	66.7%	0.225	22.2%
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	mg/kg mg/kg	0.1	<0.1 0.3	<0.1 0.4	<0.5 <0.5	N/A 0.350	N/A 28.6%	N/A 0.275	N/A 18.2%
Benzo(g,n,r)peryiene	ing/kg	0.1	0.5	0.4	<0.5	0.550	20.070	0.275	10.270
alpha-BHC	mg/kg	0.1	<0.1	<0.1	< 0.05	N/A	N/A	N/A	N/A
HCB	mg/kg	0.1	<0.1	<0.1	< 0.05	N/A	N/A	N/A	N/A
beta-BHC	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
gamma-BHC	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
delta-BHC Aldrin	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Heptachlor Epoxide	mg/kg	0.1	<0.1	<0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A
gamma-Chlordane	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
alpha-chlordane	mg/kg	0.1	<0.1	<0.1	< 0.05	N/A	N/A	N/A	N/A
Endosulfan I	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
pp-DDE	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Dieldrin	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Endrin Endeaulfen H	mg/kg	0.1	<0.1	<0.1	<0.05 <0.05	N/A	N/A N/A	N/A N/A	N/A N/A
Endosulfan II pp-DDD	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A
pp-DDT	mg/kg	0.1	<0.1	<0.1	<0.2	N/A	N/A	N/A	N/A
Endosulfan Sulphate	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.2	N/A	N/A	N/A	N/A
Total +ve DDT+DDD+DDE	mg/kg	0.1	<0.1	<0.1	<0.2	N/A	N/A	N/A	N/A
Diablomica	//	0.1	<u></u>	<u>A</u> 1	-0.05	X7/A	NT / A	NT / 4	BT/4
Dichlorvos Dimethoate	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Diazinon	mg/kg mg/kg	0.1	<0.1	<0.1 <0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Chlorpyriphos-methyl	mg/kg	0.1	<0.1	<0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A
Ronnel	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Fenitrothion	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Malathion	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Chlorpyriphos	mg/kg	0.1	<0.1	<0.1	<0.05	N/A	N/A	N/A	N/A
Parathion Bromophos-ethyl	mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Ethion	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Azinphos-methyl (Guthion)	mg/kg	0.1	<0.1	<0.1	<0.05	N/A N/A	N/A N/A	N/A N/A	N/A
	08								
Aroclor 1016	mg/kg	0.1	<0.1	<0.1	-	N/A	N/A	N/A	N/A
Aroclor 1221	mg/kg	0.1	<0.1	<0.1	-	N/A	N/A	N/A	N/A
Aroclor 1232	mg/kg	0.1	<0.1	<0.1	-	N/A	N/A	N/A	N/A
Aroclor 1242	mg/kg	0.1	<0.1	<0.1	-	N/A	N/A	N/A	N/A
Aroclor 1248 Aroclor 1254	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	-	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Aroclor 1254 Aroclor 1260	mg/kg mg/kg	0.1	<0.1	<0.1 <0.1	-	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Total +ve PCBs (1016-1260)	mg/kg	0.1	<0.1	<0.1	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A
Arsenic	mg/kg	4	<4	<4	<5	N/A	N/A	N/A	N/A
Cadmium	mg/kg	0.4	<0.4	<0.4	<1	N/A	N/A	N/A	N/A
Chromium	mg/kg	1	11	10	8	11	9.5%	11	27.3%
Copper	mg/kg	1	31	32	31	32	3.2%	31	0.0%
Lead	mg/kg	1	250	270	293	260	7.7%	250	17.2%
Mercury Nickel	mg/kg mg/kg	0.1	1.0 4	1.1 4	1.0	1.050 4	9.5% 0.0%	1.000	0.0%
Zinc	mg/kg mg/kg	1	4 120	4 130	3 121	4 125	8.0%	4	0.8%
	mg/ kg	1	140	130	141	145	0.070	120	0.070

Mercury	mg/kg	0.1	1.0	1.1	1.0	1.050	9.5%	1.000	0.0%
Nickel	mg/kg	1	4	4	3	4	0.0%	4	25.0%
Zinc	mg/kg	1	120	130	121	125	8.0%	120	0.8%
Total Asbestos#1	g/kg	< 0.1	<0.1	<0.1	< 0.1	N/A	N/A	N/A	N/A
Asbestos ID in soil <0.1g/kg*	-	N/A	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	N/A	N/A	N/A	N/A
ACM >7mm Estimation*	g		_	_	-	N/A	N/A	N/A	N/A
FA and AF Estimation*	g		-	_	-	N/A	N/A	N/A	N/A
ACM >7mm Estimation*	%(w/w)	< 0.01	<0.01	<0.01	-	N/A	N/A	N/A	N/A
FA and AF Estimation*#2	%(w/w)	< 0.001	< 0.001	< 0.001	-	N/A	N/A	N/A	N/A

Table 17: Soil QA/QC Results (Blanks and Trip Spikes)

	Sar	mple Type	Trip Spike	Trip Blank
		Sample	TS	ТВ
	Laborato	ory Report	268144	268144
	Date	e Sampled	03/05/2021	03/05/2021
	Units	PQL		
TRH C6 - C9	mg/kg	25	-	<25
TRH C6 - C10	mg/kg	25	-	<25
vTPH C6 - C10 lessBTEX (F1)	mg/kg	25	-	<25
Benzene	mg/kg	0.2	77%	<0.2
Toluene	mg/kg	0.5	78%	<0.5
Ethylbenzene	mg/kg	1	78%	<1
m+p-xylene	mg/kg	2	77%	<2
o-Xylene	mg/kg	1	76%	<1
naphthalene	mg/kg	1	-	<1
Total +ve Xylenes	mg/kg	3	-	<3

Table 18: EIL Soil Physiochemical Properties

Sample			BH6
Depth			0.15
Date Sampled	Units	PQL	3/05/2021
Iron	mg/kg	10	9400
pH 1:5 soil:CaCl2	pH Units	0.1	5.1
Total Organic Carbon(Walkley Black)	mg/kg	1000	39000
Exchangeable Ca	meq/100g	0.1	5.4
Exchangeable K	meq/100g	0.1	0.1
Exchangeable Mg	meq/100g	0.1	1.4
Exchangeable Na	meq/100g	0.1	< 0.1
Cation Exchange Capacity	meq/100g	1	6.9
Clay in soils <2µm	% (w/w)	1	11

Table 19: Waste Classification Results			1					1									1	1		
								Lab Report	230559	230559	230559	268144	268144	268144	268144	268144	268144	268144	268144	
	NSW EPA CT1	NSW EPA CT2	NSW EPA TCLP1	NSW EPA SCC1	NSW EPA TCLP2	NSW EPA SCC2		Project Number	ES190901-F	S190901-F	ES190901-F	enchmans F	enchmans F	enchmans F	enchmans l	enchmans l	Renchmans	Renchmans	enchmans F	95% Upper
	Criteria for General Solid Waste	Criteria for Restircted Solid	Criteria for General Solid Waste	Criteria for General Solid Waste	Crieria for Restircted Solid	Criteria for Restricted Sold		Sample	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8	BH9	BH10	BH11	Confidence Limit conducted on
	Solid waste	Waste	Sond waste	Sond waste	Waste	Waste		Depth	0.5	0.5	1.5	0.15	0.15	0.15	0.05	0.15	0.15	0.15	0.15	exceedances
								Date Sampled	07/11/2019	06/11/2019	06/11/2019	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021	1 03/05/2021	03/05/2021	
TRH C6 - C9	650	2600	N/A	650	N/A	2600	Units mg/kg	PQL 25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	N/A
TRH C6 - C10	-	-	-	-	-	-	mg/kg	25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	N/A
vTPH C6 - C10 lessBTEX (F1) Benzene	- 10	- 40	- 0.5	- 18	- 2	72	mg/kg mg/kg	25 0.2	<25	<25	<25	<25	<25 <0.2	<25 <0.2	<25 <0.2	<25 <0.2	<25 <0.2	<25 <0.2	<25	N/A N/A
Toluene	288	1152	14.4	518	57.6	2073	mg/kg	0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	N/A
Ethylbenzene m+p-xylene	600	2400	30	1,080	120	4,320	mg/kg mg/kg	2	<1 <2	<1	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	N/A N/A
o-Xylene	-	-	-	-	-	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	N/A
naphthalene	-	-	- 50	-	-	-	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	N/A
Total +ve Xylenes	1000	4000		1,800	200	7,200	mg/kg	3	-3	3	3	-3	-3	3	-3	-3	3	3	<3	N/A
TRH C10 - C14	-	-	-	-	-	-	mg/kg	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	N/A
TRH C15 - C28	-		-	-	-	-	mg/kg	100 100	<100	<100 <100	<100 <100	<100 <100	<100 <100	280	140	270	980	430 360	<100 120	N/A N/A
TRH C29 - C36 Total +ve TPH (C10-C36)	10000	40000	N/A	10,000	N/A	40,000	mg/kg mg/kg	50	<50	<100	<50	<100	<100	200 505	180 345	130 425	1100 2105	815	120	N/A N/A
TRH >C10-C16 TRH >C10 - C16less Naphthalene (F2)	-	-	-	-	-	-	mg/kg	50 50	<50	<50 <50	<50 <50	<50 <50	<50 <50	53 53	<50 <50	<50 <50	<50 <50	<50	<50	N/A N/A
TRH >C10 - C10kess Naphinalene (P2) TRH >C16-C34	-	-	-	-	-	-	mg/kg mg/kg	100	<100	<100	<100	<100	<100	410	270	370	1900	700	120	N/A N/A
TRH >C34-C40 Total +ve TRH (>C10-C40)	-	-	-		-	-	mg/kg	100 50	<100	<100	<100 <50	<100	<100 <50	150 610	130 400	<100 370	370 2300	230 930	<100 120	N/A N/A
			-	-	-	-	mg/kg		00						400					
Naphthalene Acenaphthylene	-	-	-	-	-	-	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 0.4	<0.1 0.1	0.2	<0.1 <0.1	0.3 1.5	0.4	N/A N/A
Acenaphthene	-	-	-	-	-	-	mg/kg mg/kg	0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	N/A
Fluorene Phenanthrene	-	-	-	-	-	-	mg/kg mg/kg	0.1	<0.1 0.2	<0.1	<0.1	<0.1	<0.1 0.1	<0.1 0.7	<0.1 0.4	0.2	<0.1 0.1	0.5 5.2	0.4 4.9	N/A N/A
Anthracene	-	-	-	-	-	-	mg/kg	0.1	< 0.1	< 0.1	<0.1	0.3	<0.1	0.2	0.1	1.4	< 0.1	1.9	1.8	N/A
Fluoranthene Pyrene	-	-	-	-	-	-	mg/kg mg/kg	0.1 0.1	0.3 0.2	0.2 0.2	<0.1 <0.1	2 2	0.5 0.6	2.3 2.6	0.8 1	9.4 11	0.2 0.3	11 11	12 13	N/A N/A
Pyrene Benzo(a)anthracene	-	-	-	-	-	-	mg/kg mg/kg	0.1	0.1	0.1	< 0.1	2	0.5	1.8	0.6	4.3	0.2	4	5.8	N/A
Chrysene Benzo(b.j+k)fluoranthene	-	-	-	-	-	-	mg/kg mg/kg	0.1 0.2	<0.1	0.1	<0.1	1.3	0.5 0.8	1.3 3.2	0.4 1	5.8 7.2	<0.1 <0.2	5.8 7.4	6.3 8.9	N/A N/A
Benzo(a)pyrene	0.8	3.2	-	10	-	23	mg/kg	0.05	0.1	0.2	<0.05	1.2	0.4	2.1	0.58	4.6	0.1	4.6	5.9	4.5
Benzo(a)pyrene TCLP Indeno(1,2,3-c,d)pyrene	-	-	0.04	-	0.16	-	mg/L mg/kg	0.001 0.1	- <0.1	0.1	<0.1	- 0.5	0.2	- 1	0.3	<0.001 2.3	- <0.1	<0.001 2.1	<0.001 2.9	N/A N/A
Dibenzo(a,h)anthracene	-	-	-	-	-	-	mg/kg mg/kg	0.1	< 0.1	< 0.1	<0.1	0.1	<0.1	0.2	< 0.1	0.5	< 0.1	0.5	0.6	N/A
Benzo(g,h,i)perylene Total +vePAH's	- 200	- 800	- N/A	- 200	- N/A	- 800	mg/kg mg/kg	0.1 0.05	<0.1 0.91	0.1	<0.1 <0.05	0.8	0.3	1.2 17	0.3 5.5	2.3 53	<0.1 0.96	2.3 58	3.5	N/A N/A
Benzo(a)pyrene TEQ calc (zero)	-	-	-	-	-	-	mg/kg	0.5	< 0.5	< 0.5	< 0.5	1.8	0.5	2.9	0.8	6.6	< 0.5	6.5	8.4	N/A
Benzo(a)pyrene TEQ calc(half) Benzo(a)pyrene TEQ calc(PQL)	-	-	-	-	-	-	mg/kg mg/kg	0.5	<0.5	<0.5	<0.5	1.8	0.6 0.6	2.9 2.9	0.8	6.6 6.6	<0.5 <0.5	6.5 6.5	8.4 8.4	N/A N/A
alpha-BHC HCB	-	-	-	-	-	-	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	N/A N/A
beta-BHC	-	-	-	-	-	-	mg/kg	0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	N/A
gamma-BHC Heptachlor	-	-	-	-	-	-	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A N/A
delta-BHC	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	N/A
Aldrin Heptachlor Epoxide	-	-	-	-	-	-	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	< 0.1	<0.1 <0.1	440 <0.1	1 <0.1	<0.1 <0.1	N/A N/A
commo Chlosdono									-0.1	< 0.1	< 0.1	< 0.1	0.1		< 0.1	<.0.1			< 0.1	N/A
gamma-Chlordane	-	-	-	-	-	-	mg/kg	0.1	<0.1	<0.1	-		<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1		NT/A
gamma-Chiordane alpha-chiordane Endosulfan I	60	240	3	- - 108	- 12	- 432	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1				<0.1 <0.1 <0.1	<0.1 <0.1	N/A N/A
alpha-chlordane Endosulfan I pp-DDE	60	- 240				432	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	N/A N/A
alpha-chlordane Endosulfan I	- - 60 - - -			- - 108 - - -	- - 12 - - -	-	mg/kg mg/kg	0.1 0.1	< 0.1	< 0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N/A
alpha-chlordane Endosulfan I pp-DDE Dieldrin Endrin Endrin	- 60 - - - 60	- 240 - - - 240		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 13 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A
alpha-chlordane Endosulfan I pp-DDE Diektrin Endrin						-	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 13 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A
Alpha-chlordane Endosulfan I pp-DDE Endosulfan I pp-DDD Endrin H findsulfan II pp-DDD Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT	- - 60 - -	- - 240 - -	- - - - - -	- - - 108 - - -		- - 432 - -	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A
alpha-chlordane Endosulfan I pp-DDE Diekfrin Endosulfan II pp-DDD Endrin Endrin Endrin Melkehyde pp-DDT Endrin Sulphate Methoxychlor		- - 240 - - - - 240 - -	- - - - - - - - - - - - - - - - - - -			-	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A
alpha-chlordane Endosulfan I pp-DDE Diekfrin Endosulfan II pp-DDD Endosulfan II pp-DDD Endrin Aldehyde pp-DDT Endrin Aldehyde	- - 60 - - - 60	- - 240 - - - 240	- - - - - - - 3	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - 432 - - - 432	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	<0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A
alpha-chlordane Endosulfan I pp-DDE Diektrin Endosulfan I pp-DDD Endrin Micholyde pp-DDT Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE	- - - - - - - - - - - - - - -	- - 240 - - - - - - - - - - -	- - 3 - - - 3 - -	- - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	<0.1	⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1 ⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A
Alpha-chlordane Endosulfan 1 pp-DDE Endosulfan N Endrin En	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	d0.1	<0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Ø.1	d).1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.1	0.1 0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
alpha-chlordane Endosulfan 1 pp-DDE Diekkrin Endosulfan I pp-DDD Endosulfan II pp-DDD Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE Endosulfan Scheduled Chemicals	- - - - - - - - - - - - - - - 60	- 240 - - - 240 - - - - 240 <50	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - 432 - - - 432 - - - - - - - - - - - - - - - - - - -	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	d).1	d).1	(0.1) (0.1)	0.1 0.1	d).1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
alpha-chlordane Endosulfan I pp-DDE Diekfrin Endosulfan II pp-DDD Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE Endosulfan Scheduled Chemicals Dicklorvos Dimethoate Diazion Chopyriphos-methyl	- - - - - - - - - - - - - - - - - - -	- - 240 - - - 240 - - - 240 - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	d0.1	d).1	0.1 0.1 0.1 0.1	0.1 0.1	d0.1	<0.1	<0.1	<0.1	<0.1	0.1 0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Alpha-chlordane Endosulfan I pp-DDE Diskfrin Endrin Endosulfan II pp-DDD Endrin Aldehyde pp-DDT Endrin Sulphate Methoxychlor Total + sy DDT+DDD+DDE Endosulfan Sulphate Scheduled Chemicals Dichlorvos Dinerboate Diazizion Chlorpyriphos-methyl Romel Fenitrothion	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	d).1	<0.1	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	0.1 0.1	d0.1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.1	01 0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I pr-DDE Endosulfan I pr-DDE Endrin Endosulfan I pr-DDD Endrin Alebyde pr-DDT Endrin Alebyde pr-DDT Endrin Alebyde PDT Total+ve DDT+DDD+DDE Endosulfan Sulphate Methoxychlor Dot+DDD+DDE Endosulfan Sulphate Dichorovs Dizzinon Chlorpriphos-methyl Ronnel Fenitrofihon Mathtion	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		432 432 432 432	mp%g mp%g mp%g mp%g mp%g mp%g mp%g mp%g	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1	d).1	d0.1	1 1 1 1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	d0.1	<0.1	<0.1	 <0.1 	<0.1	01 0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Alpha-chlordane Endosulfan 1 p-DDE Endosulfan 1 p-DDD Endosulfan I p-DDD Endrin Aldehyde p-DDT Endrin Aldehyde p-DDT Endrin Aldehyde P-DT Total +ve DDT+DDD+DDE Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE Endosulfan Scheduled Chemicals Dicklorvos Dimethoate Diazinon Chlorpyriphos Pharthion Chlorpyriphos Pha	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	d0.1	<0.1	[15] [15] [15] [15] [15] [15] [15] [15]	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	-(0,1) -(0,1)	<0.1	<0.1	<0.1	<0.1	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Alpha-chlordane Endosulfan I pp-DDE Diektrin Endrin Endosulfan II pp-DDD Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE Endosulfan Scheduled Chemicals Dickhorvos Dimethoate Diazion Chlorpriphos-methyl Ronnel Fenitrothion Malathion Chlorpriphos Parathion Bromophos-ethyl Bromophos-ethyl	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -		432 432 432 432	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	d0.1	<0.1	1 1 1 1	0.1 0.1 0.1 0.1	-0.1 -0.1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.1	(0.1 (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Alpha-chlordane Endosulfan I p-DDE Endosulfan I p-DDE Diektrin Endosulfan II pr-DDD Endrin Alekhyde pp-DDT Endrin Alekhyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD+DDE Endosulfan Scheduled Chemicals Dickhorvos Dickhorvos Dickhorvos Dickhorvos Dickhore Endosulfan Endrin Alekhyde Dickhore Endrin Alekhyde Dickhore Dickho	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				· · · · · · · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 041 041 041 041 041 041 041 041 041 0	-0.1 -0.1	<0.1	1 1	0.1 0.1	-(0,1) -(0,1)	<0.1	<0.1	<0.1	<0.1	01 0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Alpha-chlordane Endosulfan I pr-DDE Endosulfan I pr-DDE Endrin Endosulfan I pr-DDD Endrin Alchyde pr-DDT Endrin Alchyde pr-DDT Endrin Alchyde PDT Total+ve DDT+DDP+DDE Endosulfan Scheduled Chemicals Dichlorvos Dimethoate Dichlorvos Dimethoate Dichlorvos Endrin Alchyde Penitrothion Chlorpriphos-methyl Renneyl (Guthion) Ariphos-methyl (Endin)	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				· · · · · · · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ଏ : ଏହା କରୁ	0.1 0.1	<0.1	1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1	-0.1 -0.1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.1	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I po-DDE Endosulfan I po-DDE Endrin Endosulfan I po-DDD Endrin Alebyde Endrin Alebyde po-DDT Endrin Alebyde po-DDT Endrin Alebyde Po-DT Endrin Alebyde Methoxychlor Total +ve DDT+DDD+DDE Endosulfan A Scheduld Chemicals Dicklorous Diszinon Chlorpriphos-methyl Ronnel Fenitrothion Matathion Chlorpriphos Portaple Enhom Endosulfan Bromophos-ethyl Enhom Azimphos-methyl (Cathion) Arocker 1231 Arocker 1231	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -				· · 432 ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01 01 01 01 01 01 01 01 01 01 01 01 0	d0.1	<0.1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	0.1 0.1 0.1 0.1	<0.1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	$\begin{array}{c} <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\$	10. 0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I Endosulfan I Endosulfan I Endosulfan I Dieklrin Endosulfan II pp-DDE Endrin Alebyde Endrin Alebyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT-DDD+DDE Endosulfan Scheduled Chemicals Dichchoros Dickchoros Dickchore Dickhoros Dickhoros Chlorpyriphos-methyl Ronnel Fenirohion Maththon Chlorpyriphos Parathion Eromophos-ethyl Ethion Ariphos-methyl (Rothon) Aricker 1016 Arocker 1221 Arocker 1232 Arocker 1232	· · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	dil dil	di	<0.1	1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1	<0.1	<0.1	<0.1	<0.1	$\begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\$	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I Endosulfan I Endosulfan I Endosulfan I Diektrin Endosulfan II pp-DDE Endrin Alchyde Endosulfan II pp-DDD Endrin Alchyde Dp-DDT Endosulfan Sulphate Methoxychor Total +ve DDT+DDD+DDE Endosulfan Scheduled Chemicals Dichtorvos Dichtorvos Dimethoate Dizzinon Chlorpyriphos-methyl Roanel Fenirothion Malathion Chlorpyriphos Parathion Endosulfan Endosulfan Endosulfan Endosulfan Chlorpyriphos Parathion Chlorpyriphos	- - - - - - - - - - - - - - - - - - -	· 240 · 240 · 240 · · · · · · · · · · · · ·				· · 432 ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା	di	<0.1	1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	d0.1	<0.1	<0.1	<0.1	$\begin{array}{c} <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\$	관리	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Alpha-chlordane Endosulfan I pp-DDE Diskhrin Endrin Endosulfan II pp-DDD Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT Endrin Aldehyde pp-DDT Endrosulfan Sulphate Methoxychlor Total +xe DDT+DDD+DDE Endosulfan Scheduled Chemicals Dickhorxos Dimethosate Dizzizion Chlopyriphos-methyl Romel Penitrothion Malathion Chlopyriphos Parathion Arcoker 1221 Arcoker 1221 Arcoker 1248	- - - - - - - - - - - - - - - - - - -	- - - 240 - - - - - - - - - - - - - - - - - - -			· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 041 041 041 041 041 041 041 041 041 0	di	<0.1	1 1	0.1 0.1	-0.1 -0.1	<0.1	<0.1	<0.1	<0.1	관리	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I p-DDE Endosulfan I p-DDE Diektrin Endosulfan II pp-DDD Endrin Alekhyde and	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	- - - - - - - - - - - - - - - - - - -	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା ଏହା	di	<0.1	1 1 10 1 <tr td=""></tr>	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	d0.1	<0.1	<0.1	<0.1	$\begin{array}{c} <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\ <0.1\\$	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I Endosulfan I Endosulfan I Endosulfan I Dieklrin Endosulfan II pp-DDE Endrin Alebyde Endosulfan II pp-DDD Endrin Alebyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT-DDD+DDE Endosulfan Scheduld Chemicals Dickhorvos Dickhorvos Dickhorvos Dickhorvos Dickhorte Dickhorte Dickhorte Dickhorte Dickhorte Chlorpyriphos-methyl Romael Fenirothion Mathathion Chlorpyriphos Parathion Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Chlorpyriphos Parathion	- - - - - - - - - - - - - -	· · · · · · · · · · · · · ·		- - - - - - - - - - - - - -		· · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(1) (1)	ali ali	<0.1	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	d0.1	<0.1	<0.1	<0.1	<01	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-shbridine Endosilfin I Endosilfin I Endosilfin II Disklrin Endrin Endrin M Endosilfin II pp-DDD Endrin M	- - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ଏଧା ଏଧା ଏଧା ଏଧା ଏଧା ଏଧା ଏଧା ଏଧା ଏଧା ଏଧା	dl	<0.1	1 1	0.1 0.1 0.1 0.1	d0.1	<0.1	<0.1	(0.1) (0	<0.1	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I p-DDE Endosulfan I p-DDE Disklrin Endosulfan II pp-DDD Endrin Alkohyde app-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT-DDD+DDE Endosulfan A Scheduled Chemicals Dichorvos Dimethoate Dizzinon Chlorpyriphos-methyl Endion Alkalitoin Chlorpyriphos-methyl Endosulfan Chlorpyriphos-methyl Endion Aracker 1221 Arocker 1221 Arocker 1234 Arock	- - - - - - - - - - - - - -	· · · · · · · · · · · · · ·		- - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	· · 432 · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	01 01	dl dl	 <0.1 <li< td=""><td>신 신</td><td>ଏ.1 ଏ.1 ଏ.1 ୬.1 ଏ.1 ୬.1</td><td>-0.1 -0.1</td><td><0.1</td> <0.1</li<>	신 신	ଏ.1 ଏ.1 ଏ.1 ୬.1 ଏ.1 ୬.1	-0.1 -0.1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<01	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
alpha-chlordane Endosulfan I pr-DDE Endosulfan I pr-DDE Endrin Endosulfan II pr-DDD Endrin Alchbyde Endrin Alchbyde pr-DDT Endrin Alchbyde pr-DDT Endrin Alchbyde Pr-DDT+DDD+DDE Endosulfan B Endosulfan	- - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·		- - - - - - - - - - - - - -		· · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	dl dl	<0.1	관리 관리 관리	0.1 0.1 0.1 0.1	d0.1 d0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<01	-0.1 -0.1	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Apha-Chordane Endosulfan I pp-DDE Diektrin Endosulfan II pp-DDD Endosulfan II pp-DDD Endrin Achevyde pp-DDT Endrin Achevyde pp-DDT Endrin Achevyde pp-DDT Endosulfan Sulphate Methoxychlor Total +ve DDT+DDD-DDE Endosulfan Sulphate Methoxychlor Scheduled Chemicals Dichlorvos Diazinon Scheduled Chemicals Dichlorvos Diazinon Romel Portophone-methyl Romel Portophone-methyl Romel Parathion Romophone-methyl (Cathion) Arcolor 1201 Arcolor 121 Arcolor 1221 Arcolor 1242 Arcolor 1242 Arcolor 1245 Arcolor 1245 Arcolor 1246 Arcolor 1240 Arcolor 1240 Arcolor 1240 <t< td=""><td>- - - - - - - - - - - - - -</td><td>· · · · · · · · · · · · · ·</td><td></td><td>- - - - - - - - - - - - - -</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>· · 432 · · · · · · · · · · · · ·</td><td>mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg</td><td>0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td><td>खा खा खा</td><td>dl dl dl</td><td> <0.1 <li< td=""><td>신 신</td><td>ଏ.1 ଏ.1 ଏ.1 ୬.1 ଏ.1 ୬.1</td><td>-0.1 -0.1</td><td><0.1</td> <0.1</li<></td> <0.1</t<>	- - - - - - - - - - - - - -	· · · · · · · · · · · · · ·		- - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	· · 432 · · · · · · · · · · · · ·	mgkg mgkg mgkg mgkg mgkg mgkg mgkg mgkg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	खा	dl dl	 <0.1 <li< td=""><td>신 신</td><td>ଏ.1 ଏ.1 ଏ.1 ୬.1 ଏ.1 ୬.1</td><td>-0.1 -0.1</td><td><0.1</td> <0.1</li<>	신 신	ଏ.1 ଏ.1 ଏ.1 ୬.1 ଏ.1 ୬.1	-0.1 -0.1	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<01	-0.1 -0.1 <t< td=""><td>NA NA NA NA NA NA NA NA NA NA NA NA NA N</td></t<>	NA NA NA NA NA NA NA NA NA NA NA NA NA N

Table 20: Site Remediation Criteria	3	1			
			HIL B/HSL D High Density Residential (0-<1m Sand) including basement parking	HIL C/HSL C Recreational Areas	EIL/ESL Urban residential and Public Open Space (coarse soils)
	Units	PQL			
TRH C6 - C9	mg/kg	25	-	-	-
TRH C6 - C10	mg/kg	25	-	-	-
vTPH C6 - C10 lessBTEX (F1)	mg/kg	25	260	45	180*
Benzene	mg/kg	0.2	3	0.5	50
Toluene	mg/kg	0.5	NL	220	85
Ethylbenzene	mg/kg	1	NL	55	70
m+p-xylene	mg/kg	2	-	-	-
o-Xylene	mg/kg	1	-	-	-
naphthalene	mg/kg	1	NL	3	-
Total +ve Xylenes	mg/kg	3	230	40	105
TRH C10 - C14	mg/kg	50	-	-	-
TRH C15 - C28	mg/kg	100	-	-	-
TRH C29 - C36	mg/kg	100	-	-	-
TRH >C10-C16	mg/kg	50	-	-	-
TRH >C10 - C16less Naphthalene (F2)	mg/kg	50	NL	110	120*
TRH >C16-C34	mg/kg	100	-	-	300
TRH >C34-C40	mg/kg	100	-	-	2800
Total +ve TRH (>C10-C40)	mg/kg	50	-	-	-
Naphthalene	mg/kg	0.1	-	-	170
Acenaphthylene	mg/kg	0.1	-	-	-
Acenaphthene	mg/kg	0.1	-	-	-
Fluorene	mg/kg	0.1	-	-	-
Phenanthrene	mg/kg	0.1	-	-	-
Anthracene	mg/kg	0.1	-	-	-
Fluoranthene	mg/kg	0.1	-	-	-
Pyrene	mg/kg	0.1	-	-	-
Benzo(a)anthracene	mg/kg	0.1	-	-	-
Chrysene	mg/kg	0.1	-	-	-
Benzo(b,j+k)fluoranthene	mg/kg	0.2	-	-	-
Benzo(a)pyrene	mg/kg	0.05	-	-	0.7
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	-	-	-
Dibenzo(a,h)anthracene	mg/kg	0.1	-	-	-
Benzo(g,h,i)perylene	mg/kg	0.1	-	-	-
Total +vePAH's	mg/kg	0.05	400	300	-
		0.5	4	3	-
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.5	1		
Benzo(a)pyrene TEQ calc (zero) Benzo(a)pyrene TEQ calc(half) Benzo(a)pyrene TEQ calc(PQL)	mg/kg mg/kg	0.5	4	3	-

Table 20: Site Remediation Criteria

Table 20:	Site	Remediation	Criteria
-----------	------	-------------	----------

Table 20: Site Remediation Crite					
			HIL B/HSL D High Density	HIL C/HSL C Recreational	EIL/ESL Urban residential
			Residential (0-<1m Sand)	Areas	and Public Open Space
			including basement parking	T H Cub	(coarse soils)
	Units	PQL			
alpha-BHC	mg/kg	0.1	-	-	-
НСВ	mg/kg	0.1	15	10	-
beta-BHC	mg/kg	0.1	-	-	-
gamma-BHC	mg/kg	0.1	-	-	-
Heptachlor	mg/kg	0.1	10	10	-
delta-BHC	mg/kg	0.1	-	-	-
Aldrin	mg/kg	0.1	6	10	-
Heptachlor Epoxide	mg/kg	0.1	10	10	-
gamma-Chlordane	mg/kg	0.1	90	70	-
alpha-chlordane	mg/kg	0.1	90	70	-
Endosulfan I	mg/kg	0.1	400	340	-
pp-DDE	mg/kg	0.1	-	-	-
Dieldrin	mg/kg	0.1	6	10	-
Endrin	mg/kg	0.1	20	20	-
Endosulfan II	mg/kg	0.1	400	340	-
pp-DDD	mg/kg	0.1	-	-	-
Endrin Aldehyde	mg/kg	0.1	20	20	-
pp-DDT	mg/kg	0.1	-	-	180
Endosulfan Sulphate	mg/kg	0.1	400	340	-
Methoxychlor	mg/kg	0.1	500	400	-
Total +ve DDT+DDD+DDE	mg/kg	0.1	600	400	-
Dichlorvos	mg/kg	0.1	-	-	-
Dimethoate	mg/kg	0.1	-	-	-
Diazinon	mg/kg	0.1	-	-	-
Chlorpyriphos-methyl	mg/kg	0.1	340	250	-
Ronnel	mg/kg	0.1	-	-	-
Fenitrothion	mg/kg	0.1	-	-	-
Malathion	mg/kg	0.1	-	-	-
Chlorpyriphos	mg/kg	0.1	340	250	-
Parathion	mg/kg	0.1	-	-	-
Bromophos-ethyl	mg/kg	0.1	-	-	-
Ethion	mg/kg	0.1	-	-	-
Azinphos-methyl (Guthion)	mg/kg	0.1	-	-	-
Aroclor 1016	mg/kg	0.1	-	-	-
Aroclor 1221	mg/kg	0.1	-	-	-
Aroclor 1232	mg/kg	0.1	-	-	-
Aroclor 1242	mg/kg	0.1	-	-	-
Aroclor 1248	mg/kg	0.1	-	-	-
Aroclor 1254	mg/kg	0.1	-	-	-
Aroclor 1260	mg/kg	0.1	-	-	-
Total +ve PCBs (1016-1260)	mg/kg	0.1	1	1	-
Arsenic	mg/kg	4	500	300	100
Cadmium	mg/kg	0.4	150	90	-
Chromium	mg/kg	1	500	300	420
Copper	mg/kg	1	30000	17000	110
Lead	mg/kg	1	1200	600	1100
Mercury	mg/kg	0.1	1200	80	-
Nickel		1	120	1200	75
Zinc	mg/kg mg/kg	1	60000	30000	250
ACM >7mm Estimation*	%(w/w)	<0.01	0.05	0.02	-
FA and AF Estimation*#2	%(w/w) %(w/w)	<0.001	0.03	0.02	-

Appendix A Development Plans

PROPOSED **RESIDENTIAL CARE FACILITY**

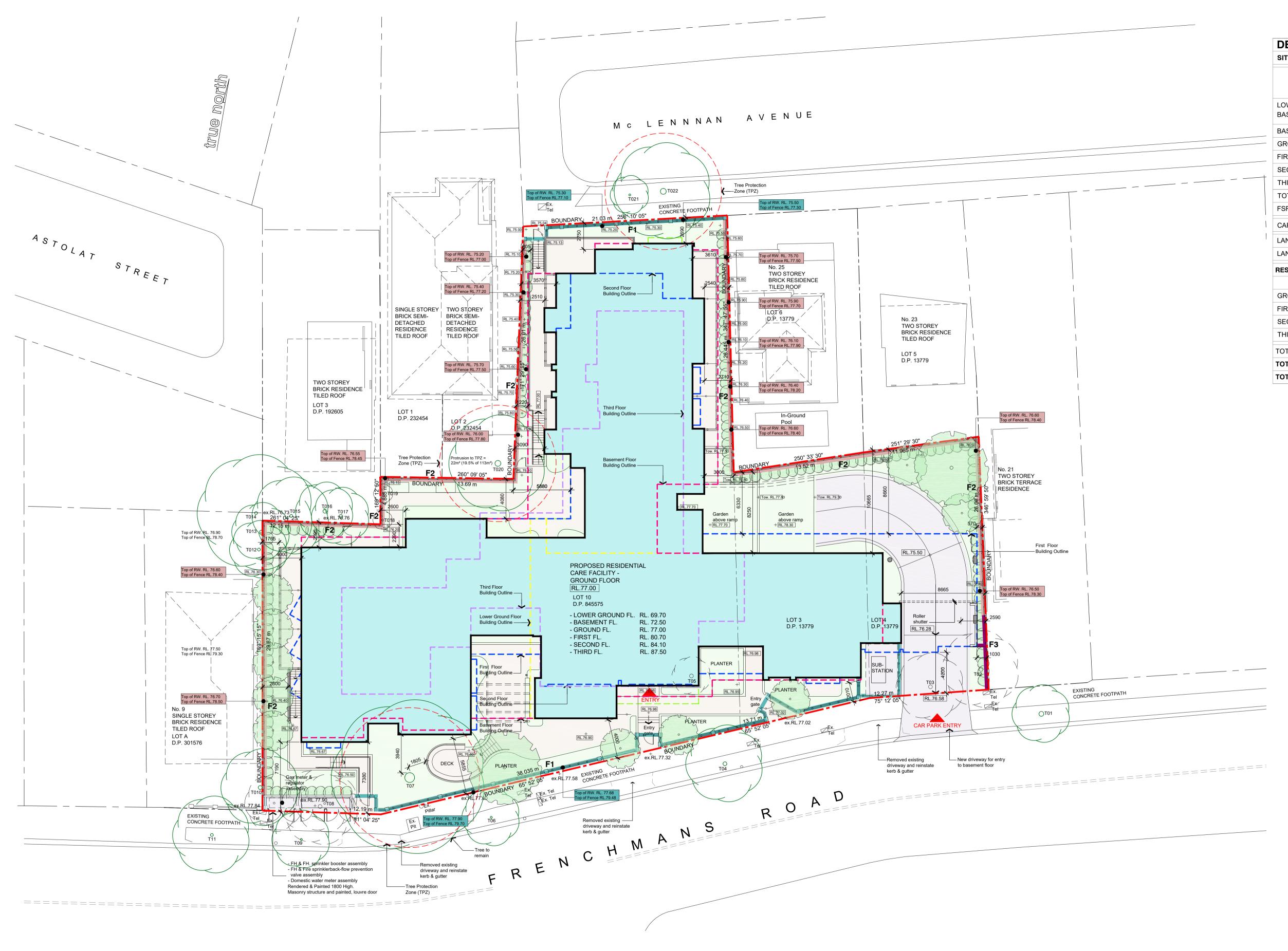
11-19 Frenchmans Road, Randwick, NSW

Drawing List

Drawing List
DWG. No. Drawing Title
DA00 - Cover Page
DA01 - Site Plan
DA02 - Site Analysis
DA02a - Site Anayis - Locality Plan
DA03 - Lower Basement Floor Plan
DA04 - Basement Floor Plan
DA05 - Ground Floor Plan
DA06 - First Floor Plan
DA07 - Second Floor Plan
DA08 - Third Floor Plan
DA09 - Roof Plan
DA10 - Sections (A,B & C)
DA11 - Sections (D, E, F & G)
DA12 - Section H & Elevations (South & West Boundary)
DA13 - Elevations (North, East, South & West)
DA14 - Street Elevations Proposed
DA15 - Street Elevation @ Frenchmans Road - Photomontage
DA16 - Street Elevation @ McLennan Avenue - Photomontage
DA17 - Shadow Diagrams Existing & Proposed (21 June 8am. 8
DA17a - Shadow Diagrams Existing & Proposed (21 June 9am. 8
DA18 - Shadow diagrams Existing & Proposed (21 June 4 pm.)
DA18a - 3D Image Showing Built form penetrating 12m Height
DA19 - Solar Access Diagrams
DA20 - Gross Floor Area Diagram - Ground Floor Plan
DA21 - Gross Floor Area Diagram - First Floor Plan
DA22 - Gross Floor Area Diagram - Second Floor Plan
DA23 - Gross Floor Area Diagram - Third Floor Plan
DA24 - Demolition Plan

11-19 Frenchmans Road, Randwick, NSW Tel: (02) 9847 3800

	Scale	Siz
	NTS	A1
	1:200	A1
	1:200	A1
	NTS	A1
	1:200	A1
)	NTS	A1
)	NTS	A1
. & 12 pm.)	1:500	A1
. & 3 pm.)	1:500	A1
.)	1:500	A1
	NTS	A1
	NTS	A1
	1:200	A1



boffarobertson group Architecture, Health Planning, Project Management Suite 7, Level 1 Epica, 9 Railway Street Chatswood, NSW 2067 Tel : (02) 9406 7000. Fax : (02) 9406 7099 Email : brgroup@brgr.net

30.09. 2020

2017 DA00

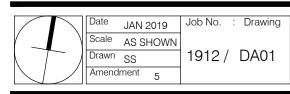
DEVELOP	MENT	ST	ATIS	TIC
SITE AREA			2,709.7 m	
	BCA FLOOR AR	EA		S FLOOR (VERTICA
LOWER 521.6 m ² - BASEMENT.FL.				
BASEMENT.FL.	1,557.2	2 m²		-
GROUND FL.	1,340.2	2 m²		905.8 m²
FIRST FL.	1,393.4	4 m²		1,278.9 m²
SECOND FL.	1,338.0	6 m²		1,231.0 m²
THIRD FL. 391.0 m ² 369.				369.6 m²
TOTAL 6,541.9 m ²			3,785.2 m²	
FSR 1.397 : 1				
CARPARKING /	19+1=	20 spaces		
LANDSCAPE AREA 1,130.3 m ²				3 m²
LANDSCAPE AREA PER BED 13.14 m ²				
RESIDENT ACCOMMODATION				
	1 BED	2	BED	TOTAL
GROUND FL.	17		0	17
FIRST FL.	24		4 x 2	32
SECOND FL.	22		4 x 2	30
THIRD FL.	7		0	7
TOTAL NUMBER	R OF THIRD	FL.	ILUs	= 2
TOTAL NUMBEI	R OF BEDS			= 86
TOTAL NUMBER OF ROOMS 78 + 2 = 80				

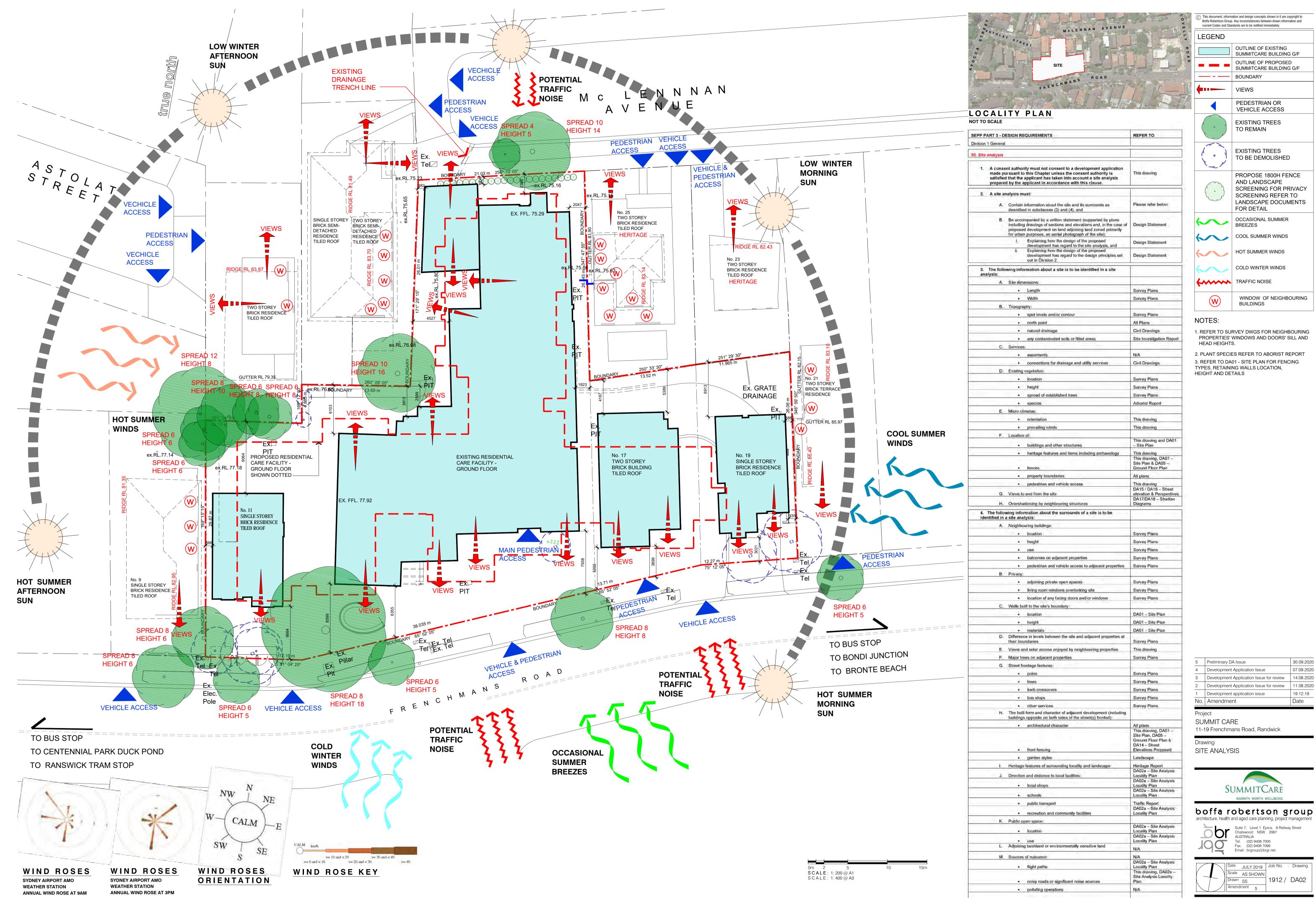
© This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and current Codes and Standards are to be notified immediately.			
LEGEND			
	PROPOSED RCF		
	BOUNDARY		
	SOFT LANDSCAPE		
	HARD LANDSCAPE		
-0	FENCE TYPE 1		
-00	FENCE TYPE 2		
+ ex RL.76.80	EXISTING LEVEL RL.		
+ RL.76.80	NEW FINISHED LEVEL RL.		
+ TOW RL.	PROPOSED TOP OF WALL LEVEL		
	LOWER GROUND FLOOR		
	BASEMENT FLOOR		
	FIRST FLOOR		
	SECOND FLOOR		
	THIRD FLOOR		
	PROPOSED ROADS AND DRIVEWAYS		
°	EXISTING TREES TO REMAIN		
·	EXISTING TREES TO BE REMOVED		
F1	1800H POWDER COATED STEEL BLADE SECURITY FENCE ON MASONRY WALL RENDERED AND PAINTED WITH 400 X400 X1950H MASONRY COLUMN POST RENDERED AND PAINTED FINISH + EXISTING FENCE		
F2	1800H COLORBOND STEEL FENCING & RETAINING WALL + EXISTING FENCE		
F3	1800H COLORBOND STEEL FENCING + EXISTING FENCE		
FRENCHMAN BOUNDARIES	IG FENCING EXCEPT FOR S ROAD AND Mc LENNAM AVENUE TO REMAIN. NEW FENCING TO BE THE BOUNDARY ADJACENT		

3 De	evelopment Application Issue evelopment Application Issue for review	07.09.2020 14.08.2020
		14.08.2020
2 D		
2 0.	evelopment Application Issue for review	11.08.2020
1 De	evelopment application issue	19.12.19
No. A	mendment	Date

Project SUMMIT CARE

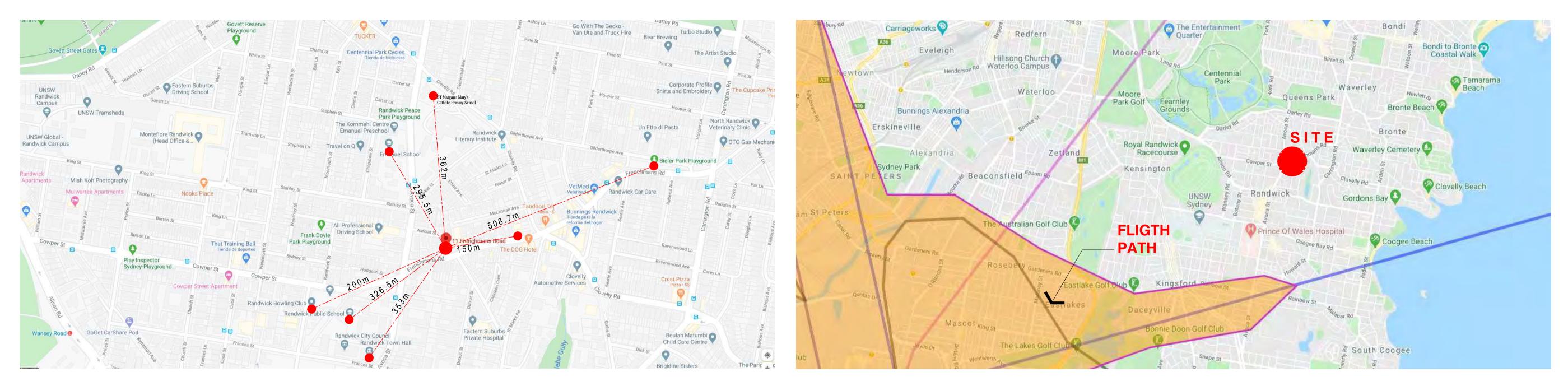
11-19 Frenchmans Road, Randwick


Drawing

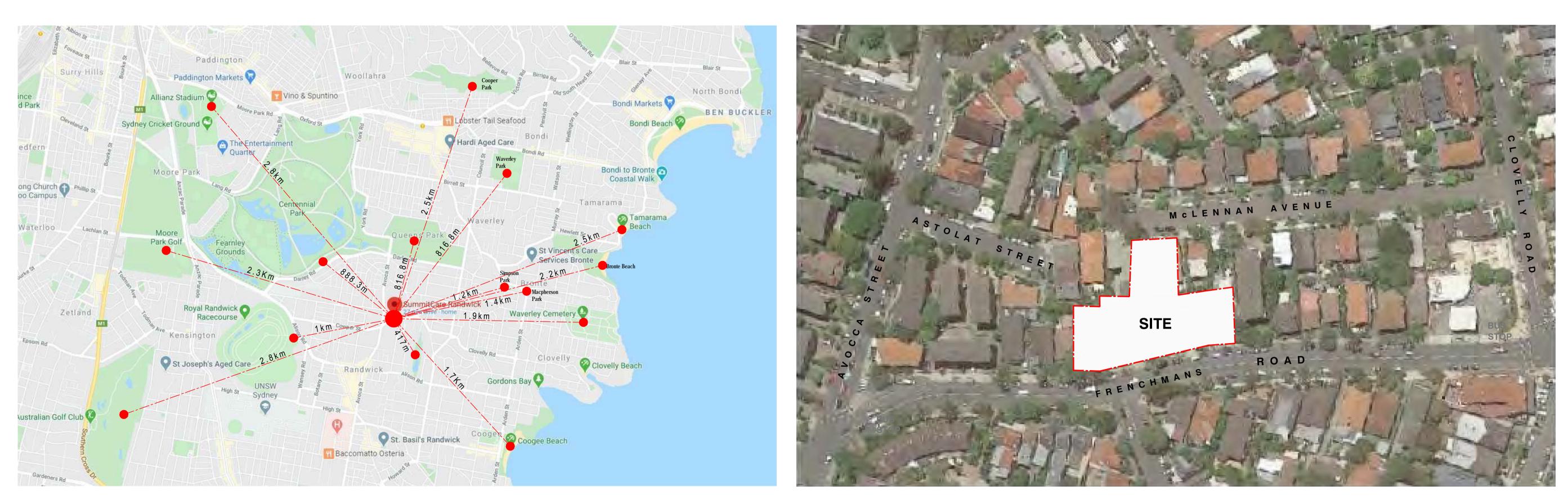

SITE PLAN

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net



	REFER TO
ent authority must not consent to a development application ursuant to this Chapter unless the consent authority is d that the applicant has taken into account a site analysis	This drawing
d by the applicant in accordance with this clause.	
nalysis must:	Please refer below
described in subclauses (3) and (4), and Be accompanied by a written statement (supported by plans	
including drawings of sections and elevations and, in the case proposed development on land adjoining land zoned primarily for urban purposes, an aerial photograph of the site):	of Design Statement
Explaining how the design of the proposed development has regard to the site analysis, and Explaining how the design of the proposed development has regard to the design principles set out in Division 2	Design Statement
owing information about a site is to be identified in a site	1
Site dimensions:	
Length	Survey Plans
• Width	Survey Plans
Topography: • spot levels and/or contour	Survey Plans
north point	All Plans
natural drainage	Civil Drawings
any contaminated soils or filled areas Services:	Site Investigation Report
easements	N/A
connections for drainage and utility services Existing vegetation.	Civil Drawings
location	Survey Plans
height	Survey Plans
spread of established trees. species	Survey Plans Arborist Report
Micro climates:	, and the point
orientation	This drawing
prevailing winds Location of:	This drawing
buildings and other structures	This drawing and DA01 – Site Plan
heritage features and items including archaeology	This drawing
• fènces	This drawing, DA01 – Site Plan & DA05 – Ground Floor Plan
property boundaries	All plans
pedestrian and vehicle access	This drawing DA15 / DA16 – Street
Views to and from the site	elevation & Perspectives DA17/DA18 – Shadow
Overshadowing by neighbouring structures	Diagrams
wing information about the surrounds of a site is to be a site analysis:	
Neighbouring buildings Iocation	Survey Plans
height	Survey Plans
• Lise	Survey Plans
 balconies on adjacent properties pedestrian and vehicle access to adjacent properties 	Survey Plans Survey Plans
Privacy:	oursy rais
adjoining private open spaces	Survey Plans
Iiving room windows overlooking site location of any facing doors and/or windows	Survey Plans Survey Plans
Walls built to the site's boundary:	ouvey rans
location	DA01 – Site Plan
 height materials 	DA01 – Site Plan DA01 – Site Plan
Difference in levels between the sile and adjacent properties a their boundaries	1.
Views and solar access enjoyed by neighbouring properties	Survey Plans This drawing
Major trees on adjacent properties	Survey Plans
Street frontage features: • poles	Survey Plans
trees	Survey Plans
kerb crossovers	Survey Plans
bus stops	Survey Plans
other services The built form and character of adjacent development (including	Survey Plans
buildings opposite on both sides of the street(s) fronted): architectural character	All plans
	This drawing, DA01 – Site Plan, DA05 –
front fencing	Ground Floor Plan & DA14 – Street Elevations Proposed
garden styles.	Landscape
Heritage features of surrounding locality and landscape	Heritage Report DA02a – Site Analysis
Direction and distance to local facilities.	Locality Plan DA02a – Site Analysis
local shops	Locality Plan DA02a – Site Analysis
schools public transport	Locality Plan Traffic Report
recreation and community facilities	DA02a – Site Analysis Locality Plan
Public open space:	
location	DA02a – Site Analysis Locality Plan DA02a – Site Analysis
use Adjoining bushland or environmentally sensitive land	Locality Plan
Sources of nuisance:	N/A N/A
flight paths	DA02a – Site Analysis Locality Plan
	This drawing, DA02a – Site Analysis Locality
 noisy roads or significant noise sources 	Plan


	 Any inconsistencies between drawn information and ndards are to be notified immediately.
LEGEND	
	OUTLINE OF EXISTING SUMMITCARE BUILDING G/F
	OUTLINE OF PROPOSED SUMMITCARE BUILDING G/F
	BOUNDARY
+ • • • • • • • • • • • • • • • • • • •	VIEWS
	PEDESTRIAN OR VEHICLE ACCESS
	EXISTING TREES TO REMAIN
	EXISTING TREES TO BE DEMOLISHED
<	PROPOSE 1800H FENCE AND LANDSCAPE SCREENING FOR PRIVACY SCREENING REFER TO LANDSCAPE DOCUMENTS FOR DETAIL
\sim	OCCASIONAL SUMMER BREEZES
~	COOL SUMMER WINDS
\leftarrow	HOT SUMMER WINDS
~	COLD WINTER WINDS
{ ~~~~~	TRAFFIC NOISE
Ŵ	WINDOW OF NEIGHBOURING BUILDINGS

No.	Amendment	Date
1	Development application issue	19.12.19
2	Development Application Issue for review	11.08.2020
3	Development Application Issue for review	14.08.2020
4	Development Application Issue	07.09.2020
5	Preliminary DA Issue	30.09.2020

DIRECTIONS & DISTANCES TO LOCAL FACILITY PLAN

PUBLIC OPEN SPACE PLAN

FLIGTH PATH PLAN

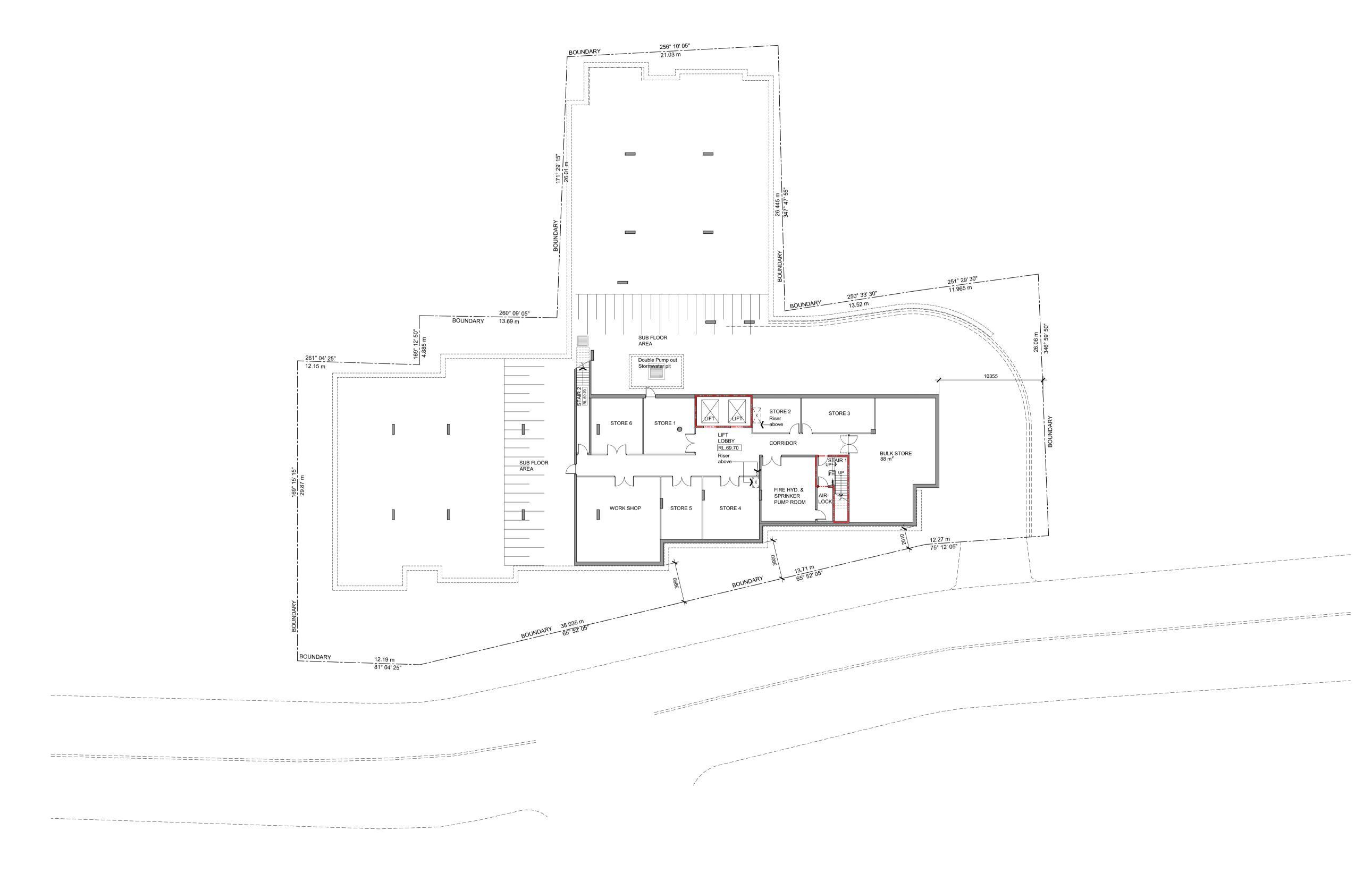
LOCATION PLAN

30.09.2020			
07 00 0000			
07.09.2020			
14.08.2020			
Date			
Project			

SUMMIT CARE

11-19 Frenchmans Road, Randwick

Drawing


SITE ANALYSIS - LOCALITY PLAN

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7009 Fax. (02) 9406 7099 Email : brgroup@brgr.net

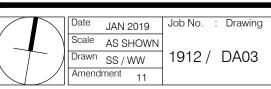
C This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and	
Boffa Robertson Group. Any inconsistencies between drawn information and	
current Codes and Standards are to be notified immediately.	

		d Standards are to be			
	`				
LEGEND					
BOUNDARY					
		SONRY WALL			
			LL AI	BOVE / BE	LOW
+ ex.RL.00.00		STING LEVEL			
RL.00.00	PR	OPOSED LEVI	ELS		
H	PR	OPOSED DOC	R		
	OPOSED WIN	DOW	1		
\bigcirc	мо	BILE BATH			
	CEI	ILING FAN			
X (CD-00)	ELE	EVATION TAG			
SECTION / ELEVATION TAG					
ACOUSTIC REQUIREMENTS					
	Rw 36	3 10.38mm lam	inate	d OR Rw (36 6/12/8 glass
	Rw 31	10mm monoli	thic (OR Rw 34	6/12/6 glass
	Rw 27 6mm monolithic OR Rw 34 6/12/6 glass				
NCC 2019	9 - S	SECTION	J R	EQUIR	EMENTS
Envelope Cor	struc	tion		Total Sys (m²K/W)	stem R-Value
J1.3 Roof ar	nd ceil	ing constructio	n	≥	3.70
J1.4 Roof lig	J1.4 Roof lights			N/A	
J1.5a Total S construction (a			≥	2.39	
construction (b	J1.5b Total System internal wall construction (between conditioned & unconditioned areas)			≥ 1.00	
J1.6a Floor co (above an unc				≥ 2.00	
J1.6b Floor c (concrete slab				No insula	ation required
Glazing - Fran Construction (Uniform solut		Orientation		al System SHGC	Total System SHGC
J1.5c Total Wi Frame construc		All facades		≤ 4.00	≤ 0.29

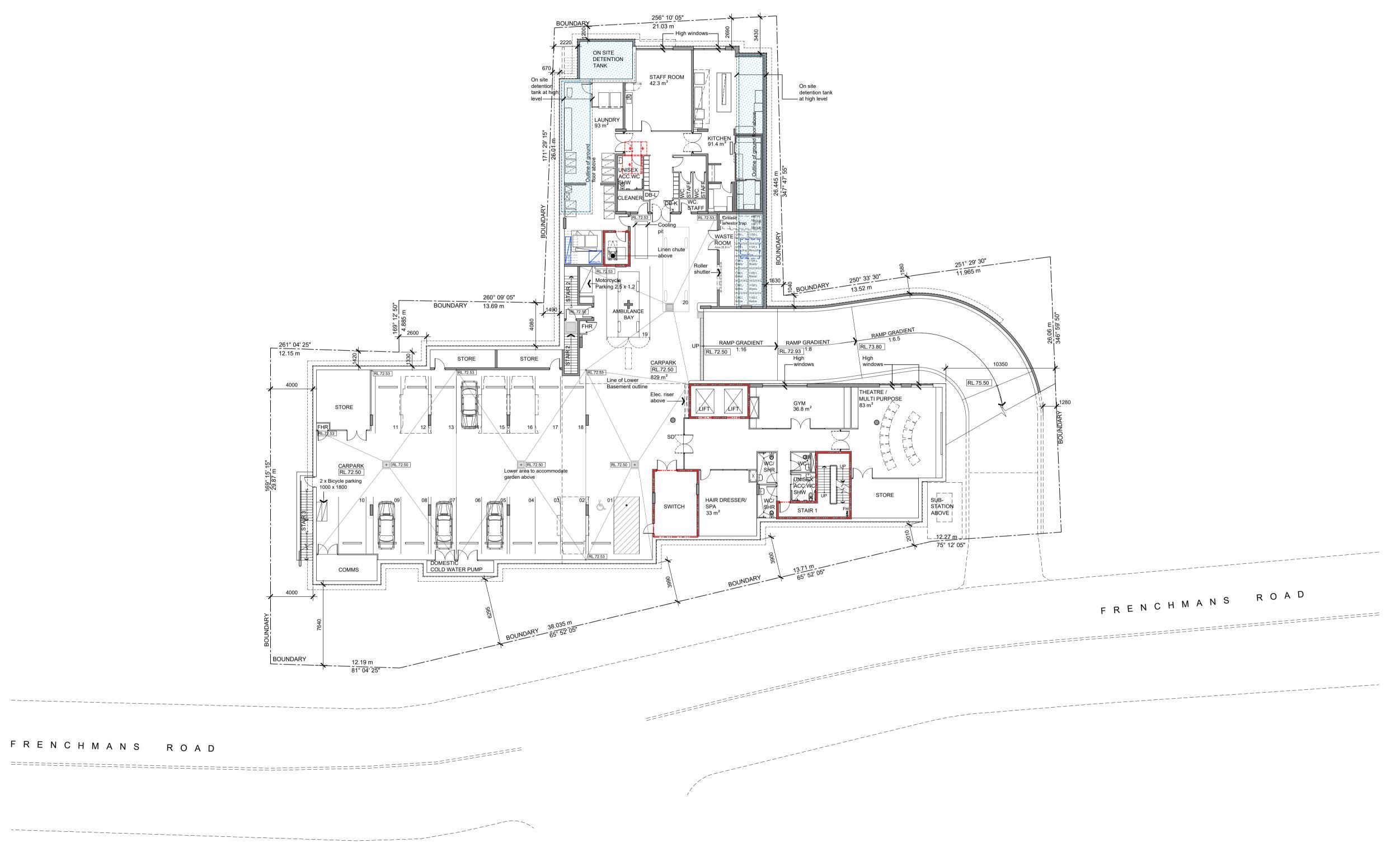
11	Preliminary DA Issue	30.09.2020
10	Development Application Issue	07.09.2020
9	Development Application Issue for review	14.08.2020
8	Development Application Issue for review	11.08.2020
7	Preliminary Issue discussion	27.07.2020
6	Preliminary Issue for coordination	08.07.2020
5	Preliminary Issue for review & comment	06.07.2020
4	Development Application Issue	19.12.19
3	Preliminary Issue	03.12.19
2	Preliminary Issue	06.11.19
1	Preliminary Issue	18.09.19
No.	Amendment	Date

SUMMIT CARE

11-19 Frenchmans Road, Randwick


Drawing

LOWER BASEMENT FLOOR PLAN


boffa robertson group architecture, health and aged care planning, project management

0m 2 5 S C A L E : 1: 200 @ A1 S C A L E : 1: 400 @ A3

15m

C	This docume
	Boffa Roberts

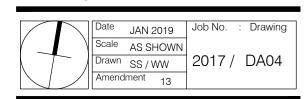
ocument, information and design concepts shown in it are copyright to
obertson Group. Any inconsistencies between drawn information and
Codes and Standards are to be notified immediately.

		Group. Any inconsiste d Standards are to be			offormation and	
LEGEND						
	– BOUNDARY					
		SONRY WALL				
		TLINE OF WA				
					.2011	
		W FENCE				
+ ex.RL.00.00		STING LEVEL	s			
RL.00.00	PR	OPOSED LEV	ELS			
H FT	PR	ROPOSED DOOR				
	PR	OPOSED WIN	DOW	1		
\bigcirc	МО	MOBILE BATH				
	CEI	CEILING FAN				
X CD-00	ELE	ELEVATION TAG				
X	SE	ECTION / ELEVATION TAG				
ACOUSTI	CR	EQUIREN	/EI	NTS		
F	Rw 36	5 10.38mm lam	inate	d OR Rw 3	36 6/12/8 glass	
F	Rw 31	10mm monoli	thic (OR Rw 34	6/12/6 glass	
F	Rw 27	6mm monolith	nic O	R Rw 34 6	/12/6 glass	
NCC 2019) - S	ECTION	JR	EQUIR	EMENTS	
•				Total Sys (m ² K/W)	stem R-Value	
J1.3 Roof and	d ceil	ing constructio	n	≥ 3.70		
J1.4 Roof ligh	nts			N/A		
J1.5a Total Sy construction (al				≥ 2.39		
J1.5b Total System internal wall construction (between conditioned & unconditioned areas)				≥ 1.00		
J1.6a Floor construction (above an unconditioned zone)				≥ 2.00		
J1.6b Floor construction (concrete slab on ground)				No insulation required		
Glazing - Frame Construction (Uniform solution)		Orientation	Total System SHGC		Total System SHGC	
J1.5c Total Win Frame construct		All facades	≤ 4.00 ≤ 0.29		≤ 0.29	
Frame construc	tion					

13	Preliminary DA Issue	30.09.2020
12	Development Application Issue	07.09.2020
11	Development Application Issue for review	14.08.2020
10	Development Application Issue for review	13.08.2020
9	Development Application Issue for review	11.08.2020
8	Preliminary Issue discussion	27.07.2020
7	Preliminary Issue for coordination	08.07.2020
6	Preliminary Issue for review & comment	06.07.2020
5	building outline modifed following changes on the upper level	27.04.20
4	Development Application Issue	19.12.19
3	Preliminary Issue	03.12.19
2	Preliminary Issue	06.11.19
1	Preliminary Issue	18.09.19
No.	Amendment	Date

SUMMIT CARE

11-19 Frenchmans Road, Randwick


Drawing

BASEMENT FLOOR PLAN

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net JQQ

	٨	Ν	S	R	0	А	D	
N/I	A	IN	0					

0m 2 5 S C A L E : 1: 200 @ A1 S C A L E : 1: 400 @ A3

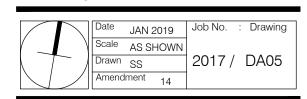
0	This docume
S	Boffa Roberts

	ues and Standards are to be	nouneu	inineulately.		
LEGEND					
	BOUNDARY				
	MASONRY WALL	_			
	STUD WALL				
	OUTLINE OF WA	LL A	BOVE / BE	LOW	
	ROOF OUTLINE				
	NEW FENCE				
+ ex.RL.00.00 EXISTING LEVELS					
RL.00.00	PROPOSED LEVELS				
H H	PROPOSED DOOR				
	PROPOSED WIN	DOW	1		
\bigcirc	MOBILE BATH				
	CEILING FAN				
X (CD-00)	ELEVATION TAG	i			
X	SECTION / ELEV	ΆΤΙΟ	N TAG		
ACOUSTIC	C REQUIREI	MEN	NTS		
R	w 36 10.38mm lan	ninate	d OR Rw (36 6/12/8 glass	
R	w 31 10mm monol	ithic (OR Rw 34	6/12/6 glass	
R	w 27 6mm monolit	hic O	R Rw 34 6	/12/6 glass	
NCC 2019	- SECTION	J R	EQUIR	EMENTS	
Envelope Cons	truction		Total Sys (m ² K/W)	stem R-Value	
J1.3 Roof and	l ceiling construction	on	≥ 3.70		
J1.4 Roof ligh	ts		N/A		
J1.5a Total System Construction (all	stem external wall facades)		2	2.39	
J1.5b Total System internal wall construction (between conditioned & unconditioned areas)			≥ 1.00		
J1.6a Floor cor (above an uncor			≥ .	2.00	
J1.6b Floor cor (concrete slab o			No insula	ation required	
Glazing - Frame Construction (Uniform solutio			al System SHGC	Total System SHGC	
J1.5c Total Wind Frame construct			≤ 4.00	≤ 0.29	

14	Preliminary DA Issue	30.09.2020
13	Development Application Issue	07.09.2020
12	Development Application Issue for review	14.08.2020
11	Development Application Issue for review	11.08.2020
10	Preliminary Issue discussion	27.07.2020
9	Preliminary Issue for coordination	08.07.2020
8	Preliminary Issue for review & comment	06.07.2020
7	Changes required to avoid removing tree	27.04.20
6	Development Application Issue	19.12.19
5	Preliminary Issue	03.12.19
4	Preliminary Issue	06.11.19
No.	Amendment	Date

Project SUMMIT CARE

11-19 Frenchmans Road, Randwick


Drawing

GROUND FLOOR PLAN

boffa robertson group architecture, health and aged care planning, project management

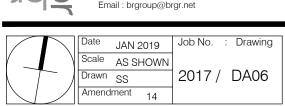
Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net ĮΟČ

0m 2 5 SCALE: 1: 200 @ A1 SCALE: 1: 400 @ A3

			nounou			
LEGEND)					
	во	UNDARY				
	MA	MASONRY WALL				
	STI	STUD WALL				
	OU	OUTLINE OF WALL ABOVE / BELOW			LOW	
	RO	ROOF OUTLINE				
	NE	NEW FENCE				
+ ex.RL.00.00	EXI	EXISTING LEVELS				
RL.00.00	PR	OPOSED LEVI	ELS			
H	PROPOSED DOOR					
	PR	OPOSED WINI	DOM	I		
\bigcirc	МО	BILE BATH				
	CEILING FAN					
X (CD-00)	ELE	EVATION TAG				
X	SE	CTION / ELEV	ΑΤΙΟ	N TAG		
ACOUSTI	C R	EQUIREN	/EI	NTS		
	Rw 36	6 10.38mm lam	inate	ed OR Rw (36 6/12/8 glass	
	Rw 31	10mm monoli	thic (OR Rw 34	6/12/6 glass	
I	Rw 27	6mm monolith	nic O	R Rw 34 6	/12/6 glass	
NCC 2019	9 - 8	SECTION	JR	EQUIR	EMENTS	
Envelope Con	struc	tion		Total Sys (m²K/W)	stem R-Value	
J1.3 Roof an	id ceil	ing constructio	n	≥ 3.70		
J1.4 Roof lig	hts			1	N/A	
J1.5a Total Sy construction (a				≥	2.39	
J1.5b Total System internal wall construction (between conditioned & unconditioned areas)			&	≥ 1.00		
J1.6a Floor construction (above an unconditioned zone)				≥	2.00	
J1.6b Floor co (concrete slab				No insula	ation required	
Glazing - Fram Construction (Uniform solut		Orientation		al System SHGC	Total System SHGC	
J1.5c Total Win Frame construc		All facades		≤ 4.00	≤ 0.29	

14	Preliminary DA Issue	30.09.2020
13	Development Application Issue	07.09.2020
12	Development Application Issue for review	14.08.2020
11	Development Application Issue for review	11.08.2020
10	Preliminary Issue discussion	27.07.2020
9	Preliminary Issue for coordination	08.07.2020
8	Preliminary Issue for review & comment	06.07.2020
7	Changes required to avoid removing tree	27.04.20
6	Development Application Issue	19.12.19
5	Preliminary Issue	03.12.19
4	Preliminary Issue	06.11.19
No.	Amendment	Date
Proi	ect	

Project SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing

boffa robertson group architecture, health and aged care planning, project management

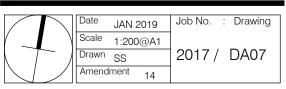
Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

© This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and current Codes and Standards are to be notified immediately.

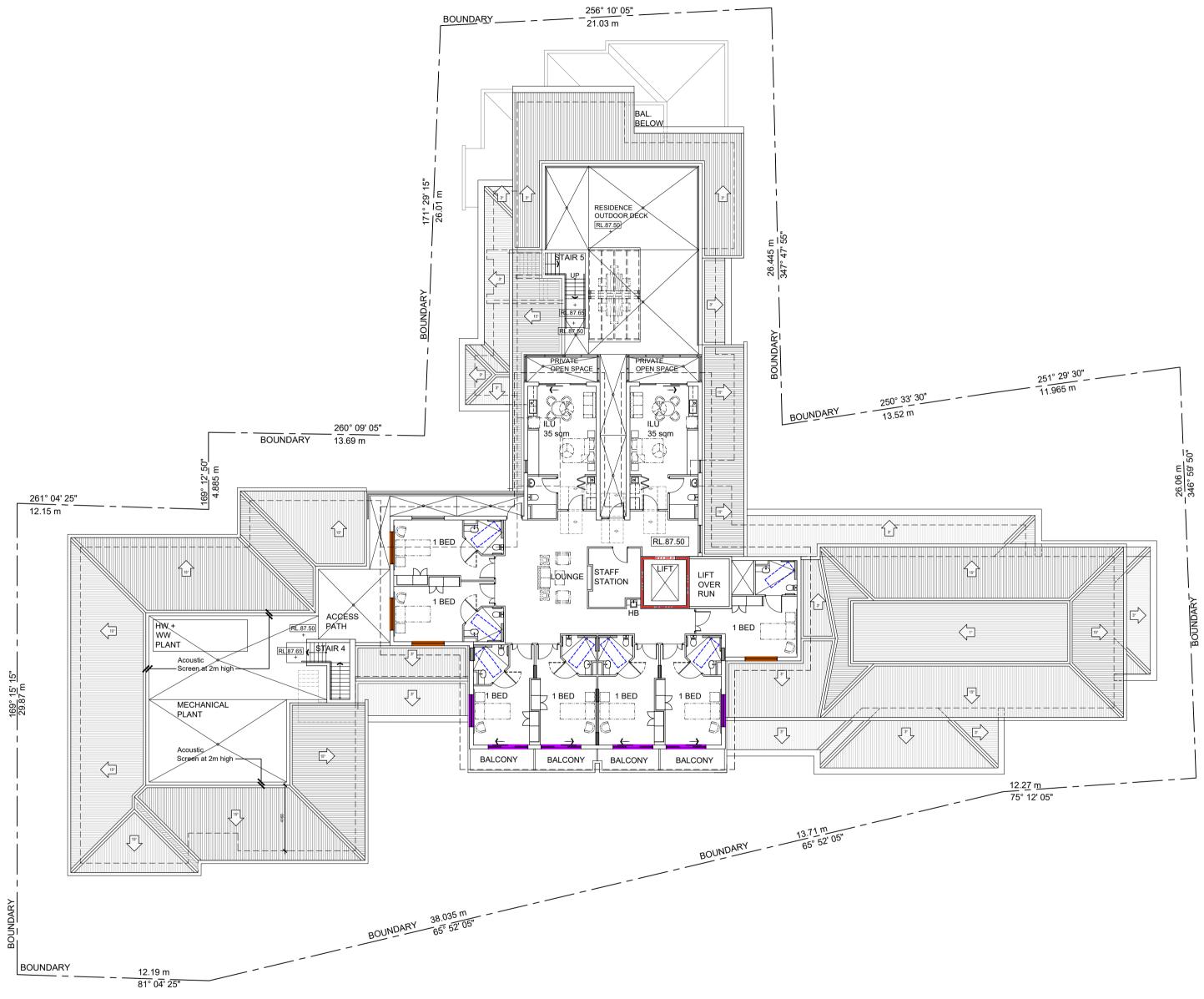
current Codes and Standards are to be notified immediately.						
LEGEND						
	BOUNDARY					
	MASONRY WALL					
	STUD WALL					
	OUT	LINE OF WA	LL AI	BOVE / BE	LOW	
	ROOF OUTLINE					
	NEW	FENCE				
+ ex.RL.00.00	EXISTING LEVELS					
RL.00.00	PRO	POSED LEVI	ELS			
H FT	PRO	POSED DOC	R			
	PRO	POSED WIN	DOW	1		
\bigcirc	MOB	ILE BATH				
	CEILING FAN					
X CD-00	ELE	ATION TAG				
X	SEC	TION / ELEV/	ΑΤΙΟ	N TAG		
ACOUSTIC	R		١E١	NTS		
R	<i>N</i> 36	10.38mm lam	inate	d OR Rw 3	36 6/12/8 glass	
R	w 31	10mm monoli	thic (DR Rw 34	6/12/6 glass	
R	N 27 (6mm monolith	nic O	R Rw 34 6	/12/6 glass	
NCC 2019	- SI	ECTION	J R	EQUIR	EMENTS	
Envelope Const	tructi	on		Total Sys (m²K/W)	stem R-Value	
J1.3 Roof and	ceilir	ng constructio	n	≥	3.70	
J1.4 Roof light	s			1	N/A	
J1.5a Total Sys construction (all				≥	2.39	
J1.5b Total System internal wall ≥ 1.00 construction (between conditioned & unconditioned areas)					1.00	
J1.6a Floor construction ≥ 2.00 (above an unconditioned zone)					2.00	
J1.6b Floor con (concrete slab o				No insula	ation required	
Glazing - Frame Construction (Uniform solutio		Orientation		al System SHGC	Total System SHGC	
J1.5c Total Winc Frame constructi		All facades		≤ 4.00	≤ 0.29	
			L		I	

14	Preliminary DA Issue	30.09.2020
13	Development Application Issue	07.09.2020
12	Development Application Issue for review	14.08.2020
11	Development Application Issue for review	11.08.2020
10	Preliminary Issue discussion	27.07.2020
9	Preliminary Issue for coordination	08.07.2020
8	Preliminary Issue for review & comment	06.07.2020
7	Changes required to avoid removing tree, Northern wing pulled back from boundary, Dwelling units to eastern wing converted to 8 bedrooms (10 beds)	27.04.20
6	Development Application Issue	19.12.19
5	Preliminary Issue	03.12.19
4	Preliminary Issue	06.11.19
3	Preliminary Issue	18.09.19
No.	Amendment	Date

Project SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing

SECOND FLOOR PLAN


boffa robertson group architecture, health and aged care planning, project management

0m 2 5 S C A L E : 1: 200 @ A1 S C A L E : 1: 400 @ A3

15m

\bigcirc	This documer
S	Boffa Roberts

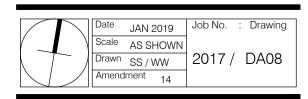
This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and current Codes and Standards are to be notified immediately.

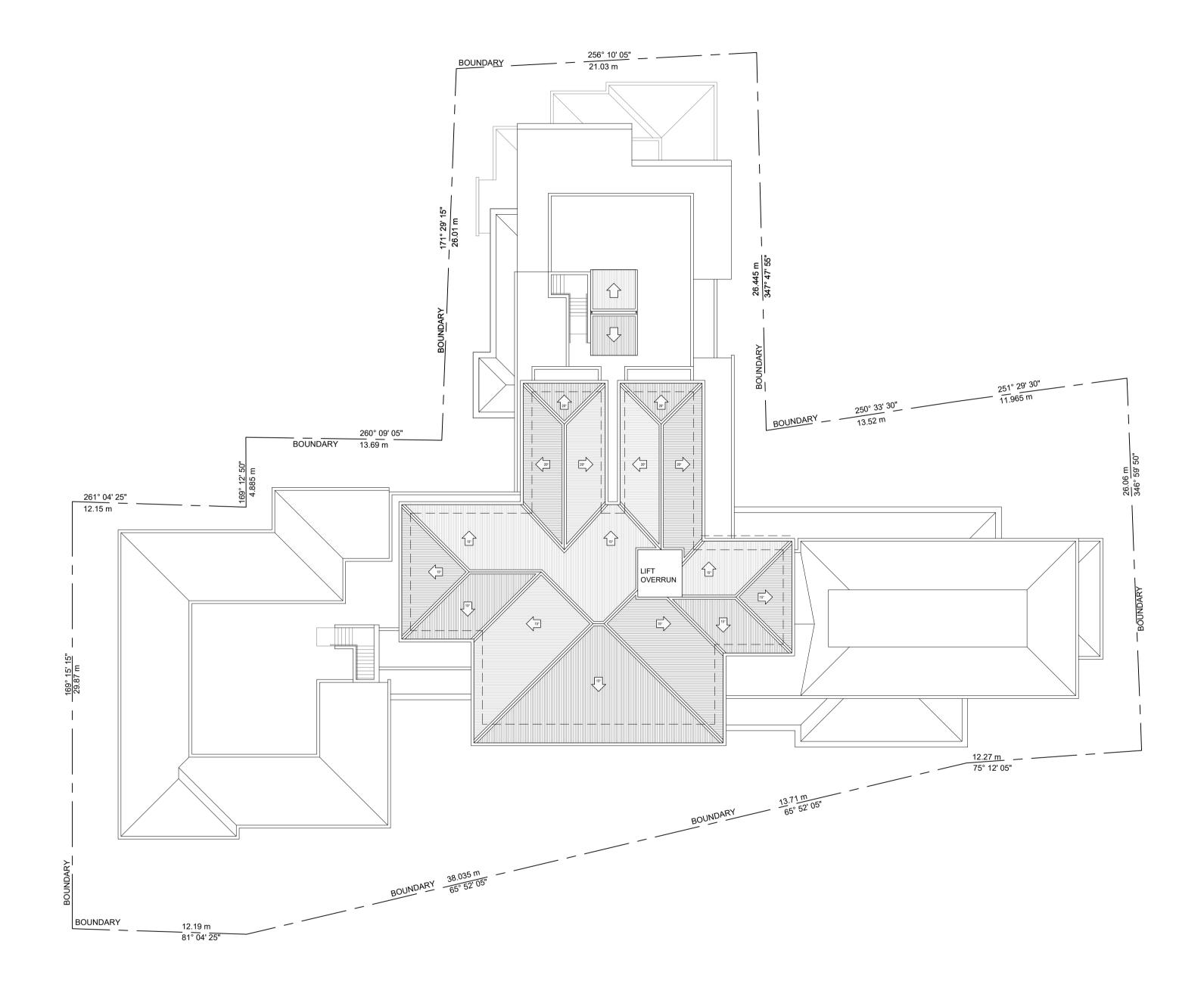
	ermal Comfort Inclusions
Floors	Concrete between levels, no insulation required
Walls	External walls: Brick Veneer with R2.0 insulation (insulation only value) External colour: Medium (0.475 <sa<0.7) Inter-tenancy walls: Minimum 75mm Hebel Power Panel to walls adjacent to neighbours and hallways, no insulation required. Internal walls (within units): Plasterboard on studs</sa<0.7)
Windows	Aluminium framed double glazing: U-value: 3.40 (equal to or lower than) SHGC: 0.33 (±10%) Given values are AFRC total window system values (glass and frame) Note: Openability modelled as per BASI2 Thermal Protocol – 4.14.2 and NatHERS Technical Note 1.2 – 10.11 with regards to restricted openings
Ceilings	Plasterboard ceiling with R3.0 insulation (insulation only value) to where roof is above. Plasterboard ceiling, no insulation where neighbouring units are above. Note: Loss of ceiling insulation due to penetrations from down lights have been accounted for in accordance with BCA Technical Note 2 and Sealed LED down lights at a maximum of one every 2.5m2
Roof	Metal roof with foil backed blanket (Ru1.3 and Rd1.3) External colour: Dark (SA > 0.7)
Floor coverings	Tiles to throughout
Hot water system	Central gas-fired boiler with R1.0 (~38mm) insulation to ring main and supply risers
Fixtures	Showerheads: 4.0 star low flow (>4.5L but <=6.0L/min) Toilets: 4.0 star Kitchen taps: 5.0 star Bathroom vanity taps: 5.0 star
Cooling systems	Ceiling fans + single phase air conditioning to living areas and bedrooms: Min. 3 star
Heating systems	Ceiling fans + single phase air conditioning to living areas and bedrooms: Min. 3 star
Appliances	Dish washer: 3.0 star water & 4.0 star energy rating Clothes washer: 3.0 star water & 4.0 sta energy rating Clothes dryer: 6.0 star energy rating Refrigerator: 3.5 star energy rating
Ventilation in units	Kitchen - Individual fan, externally ducted to façade, manual on/off switch Bathrooms - Individual fan, externally ducted to façade, manual on/off switch Laundry - Individual fan, externally ducted to façade, manual on/off switch
Other	Electric cooktop & electric oven Well-ventilated fridge space Air conditioning day-night zoned betwee bedrooms and living areas

	BOUNDARY				
	MASONRY WALL				
	= STUD WALL				
	OUTLINE OF	WALL A	BOVE / BE	LOW	
	ROOF OUTLIN	NE			
	NEW FENCE				
+ ex.RL.00.00	EXISTING LEV	EXISTING LEVELS			
RL.00.00	PROPOSED L	EVELS			
H H	PROPOSED [OOR			
	PROPOSED V	VINDOV	/		
\bigcirc	MOBILE BATH	ł			
	CEILING FAN				
ELEVATION TAG					
SECTION / ELEVATION TAG					
		EVATIC.	N TAG		
ACOUSTI	C REQUIR				
		EMEI	NTS	36 6/12/8 glass	
F	C REQUIR	EMEI Iaminate	NTS ad OR Rw (
F	C REQUIR Rw 36 10.38mm	EMEI Iaminate	NTS ed OR Rw 3	6/12/6 glass	
F F	C REQUIR Rw 36 10.38mm Rw 31 10mm mo	EMEI Iaminate nolithic olithic O	NTS ed OR Rw 3 OR Rw 34 R Rw 34 6	6/12/6 glass /12/6 glass	
F F NCC 2019	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon O - SECTIO	EMEI Iaminate nolithic olithic O	NTS ad OR Rw 3 OR Rw 34 R Rw 34 6 REQUIR	6/12/6 glass /12/6 glass	
F F NCC 2019 Envelope Cons	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon O - SECTIO	EMEI laminate nolithic olithic O N J F	NTS ad OR Rw 3 OR Rw 34 6 R Rw 34 6 REQUIR Total Sys (m ² K/W)	6/12/6 glass /12/6 glass REMENTS	
F F NCC 2019 Envelope Cons J1.3 Roof and	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon O - SECTIO struction d ceiling constru	EMEI laminate nolithic olithic O N J F	NTS ed OR Rw 3 OR Rw 34 R Rw 34 6 REQUIR Total Sy: (m²K/W) ≥	6/12/6 glass /12/6 glass EMENTS stem R-Value	
F F NCC 2019 Envelope Cons J1.3 Roof and J1.4 Roof light	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon D - SECTIO struction d ceiling constru- nts rstem external w	EMEI laminate nolithic 0 olithic 0 N J F	NTS ed OR Rw 3 OR Rw 34 6 R Rw 34 6 REQUIR Total Sy: (m²K/W) ≥	6/12/6 glass /12/6 glass EMENTS stem R-Value 3.70	
F F F NCC 2019 Envelope Cons J1.3 Roof and J1.4 Roof ligh J1.5a Total Sy construction (al J1.5b Total Sy construction (b	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon D - SECTIO struction d ceiling constru- nts stem external w ll facades) rstem internal wa etween condition	EMEI laminate nolithic O olithic O N J F ction all	NTS ed OR Rw 3 OR Rw 34 R Rw 34 6 REQUIR Total Sy: (m²K/W) ≥ N ≥	6/12/6 glass /12/6 glass REMENTS stem R-Value 3.70 N/A	
F F F NCC 2019 Envelope Cons J1.3 Roof and J1.4 Roof ligh J1.5a Total Sy construction (al J1.5b Total Sy construction (bu unconditioned a J1.6a Floor co	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon D - SECTIO struction d ceiling constru- nts rstem external will facades) rstem internal was etween conditionareas)	EMEI laminate nolithic 0 N J F notion	NTS ed OR Rw 3 OR Rw 34 6 R Rw 34 6 REQUIR Total Sy: (m²K/W) ≥ 1 2 2	6/12/6 glass /12/6 glass EMENTS stem R-Value 3.70 V/A 2.39	
F F F NCC 2019 Envelope Cons J1.3 Roof and J1.4 Roof light J1.5a Total Sy construction (al J1.5b Total Sy construction (bu unconditioned at J1.6a Floor co (above an unco J1.6b Floor co	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon D - SECTIO struction d ceiling constru- nts rstem external will facades) rstem internal was etween conditionant rateas) instruction onditioned zone) instruction	EMEI laminate nolithic 0 N J F notion	NTS ed OR Rw 3 OR Rw 34 R Rw 34 6 EQUIR Total Sy: (m²K/W) ≥ 1 2 2	6/12/6 glass /12/6 glass EEMENTS stem R-Value 3.70 N/A 2.39 1.00	
F F F NCC 2019 Envelope Cons J1.3 Roof and J1.4 Roof ligh J1.5a Total Sy construction (al J1.5b Total Sy construction (bu unconditioned a J1.6a Floor co	C REQUIR Rw 36 10.38mm Rw 31 10mm mo Rw 27 6mm mon D - SECTIO struction d ceiling constru- nts rstem external will facades) rstem internal was etween conditionant rate as) instruction on ditioned zone) instruction on ground) e Orientation	EMEI laminate nolithic O NJF ction all ned &	NTS ed OR Rw 3 OR Rw 34 R Rw 34 6 EQUIR Total Sy: (m²K/W) ≥ 1 2 2	6/12/6 glass /12/6 glass EMENTS stem R-Value 3.70 V/A 2.39 1.00 2.00	

14	Preliminary DA Issue	30.09.2020
13	Development Application Issue	07.09.2020
12	Development Application Issue for review	14.08.2020
11	Development Application Issue for review	11.08.2020
10	Preliminary Issue discussion	27.07.2020
9	Preliminary Issue for coordination	08.07.2020
8	Preliminary Issue for review & comment	06.07.2020
7	Meeting with PM	22.06.2020
6	2 x Dwelling Suite added and Plant ares modified.	21.05.2020
5	2 x Dwelling Suite added and Plant ares modified.	27.04.20
4	Development Application Issue	19.12.19
3	Preliminary Issue	03.12.19
2	Preliminary Issue	06.11.19
1	Preliminary Issue	27.08.19
No.	Amendment	Date

Project SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing



boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

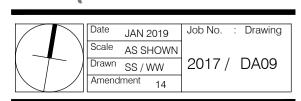
15m

C This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and current Codes and Standards are to be notified immediately.

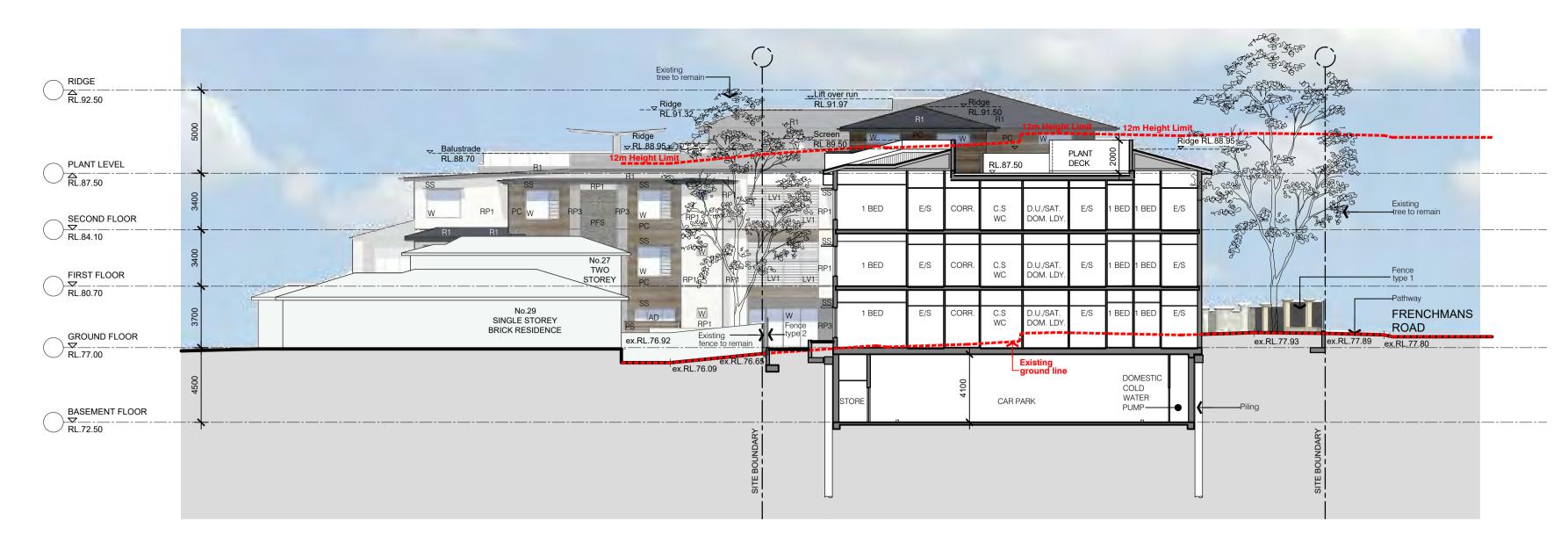
	00000 011					
LEGEN	`					
LLGLINL						
		MASONRY WALL				
		STUD WALL OUTLINE OF WALL ABOVE / BELOW				
				BOVE / BE	LOW	
		WFENCE				
+ ex.RL.00.00		EXISTING LEVELS				
RL.00.00	PR	OPOSED LEV	ELS			
ff ff	PR	OPOSED DOC	R			
	PR	OPOSED WIN	DOW	1		
\bigcirc	мо	BILE BATH				
	CE	ILING FAN				
X (CD-00)	ELE	EVATION TAG				
X	SE	CTION / ELEV	ΑΤΙΟ	N TAG		
ACOUST		EQUIREN	٨EN	NTS		
	Rw 36	6 10.38mm lam	inate	d OR Rw 3	36 6/12/8 glass	
	Rw 31	10mm monoli	thic (OR Rw 34	6/12/6 glass	
	Rw 27	6mm monolith	nic O	R Rw 34 6	/12/6 glass	
NCC 201	9 - 5	SECTION	J R	EQUIR	EMENTS	
Envelope Cor	nstruc	tion		Total Sys (m²K/W)	stem R-Value	
J1.3 Roof a	nd ceil	ing constructio	n	≥	3.70	
J1.4 Roof lig	ghts			1	N/A	
J1.5a Total S construction (a				≥	2.39	
construction (J1.5b Total System internal wall ≥ 1.00 construction (between conditioned & unconditioned areas)					
J1.6a Floor construction ≥ 2.00 (above an unconditioned zone)				2.00		
	J1.6b Floor construction (concrete slab on ground) No insulation required					
Glazing - Fran Construction (Uniform solut		Orientation		al System SHGC	Total System SHGC	
J1.5c Total Wi Frame constru		All facades		≤ 4.00	≤ 0.29	
L		I	1		1	

14	Preliminary DA Issue	30.09.2020
13	Development Application Issue	07.09.2020
12	Development Application Issue for review	14.08.2020
11	Development Application Issue for review	11.08.2020
10	Preliminary Issue discussion	27.07.2020
9	Preliminary Issue for coordination	08.07.2020
8	Preliminary Issue for review & comment	06.07.2020
7	Meeting with PM	22.06.2020
6	2 x Dwelling Suite added and Plant ares modified.	21.05.2020
5	2 x Dwelling Suite added and Plant ares modified.	27.04.20
4	Development Application Issue	19.12.19
3	Preliminary Issue	03.12.19
2	Preliminary Issue	06.11.19
1	Preliminary Issue	27.08.19
No.	Amendment	Date

Project SUMMIT CARE 11-19 Frenchmans Road, Randwick

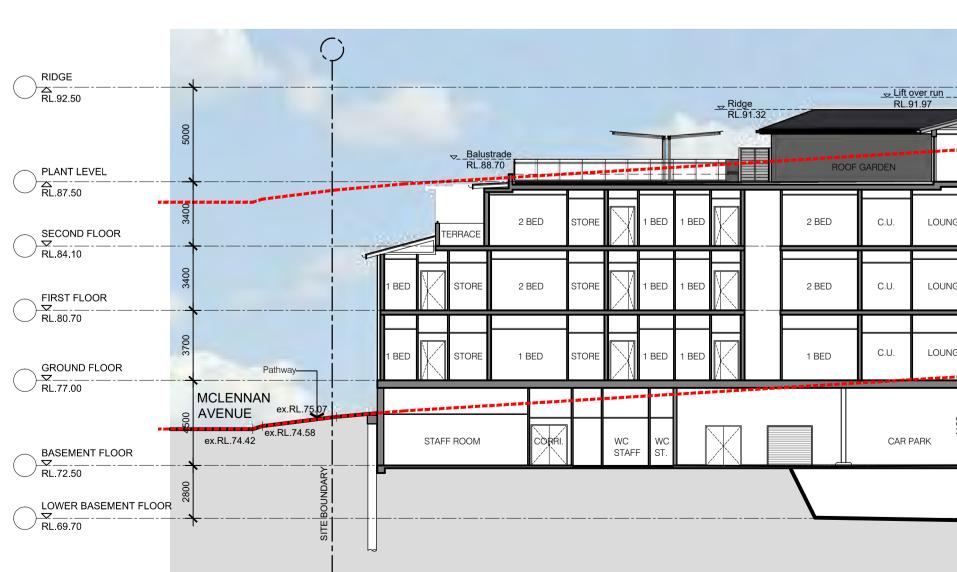

Drawing

ROOF PLAN

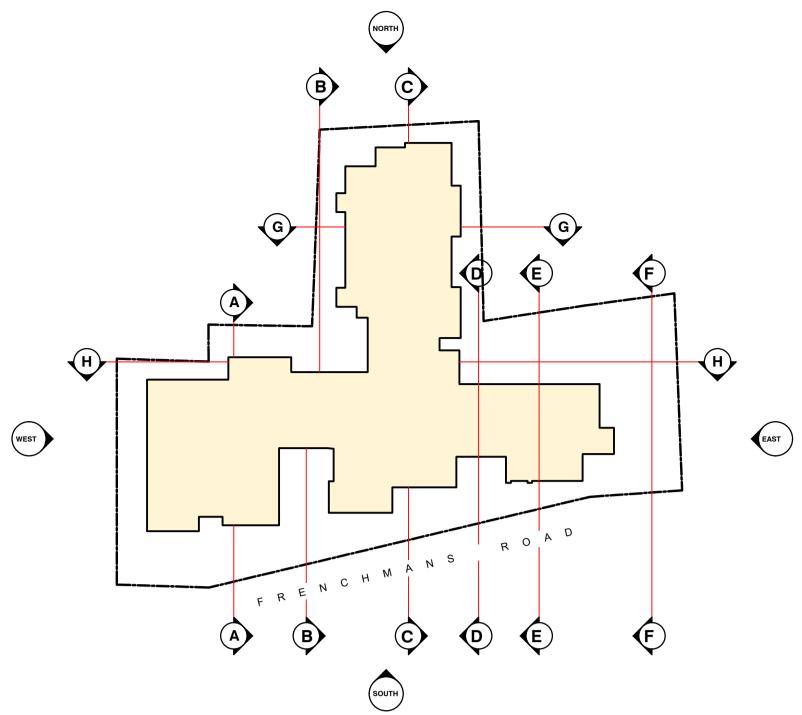


boffa robertson group architecture, health and aged care planning, project management


Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net



15m



01 Section A Scale 1:200

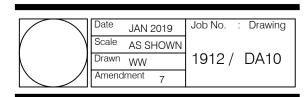
O3 Section C Scale 1:200

Key plan

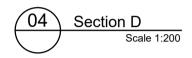
						() 		
	STAFF STATION	CORR. E	:/S	1 BED	12m Height L	imit		
IGE	ELEC. CPD	CORRIDOR	E/S	1 BED				
IGE	ELEC. CPD	CORRIDOR	E/S	1 BED	BAL			
IGE				ENTRY	Fence type 1		Pathway FRENCHMANS ROAD	
4100		Existi	ing nd line	SWITCH			ex.RL.77.25	
	STORE 1		CORR.	STORE 5]	SITE BOUNDARY		
					~	LIS		

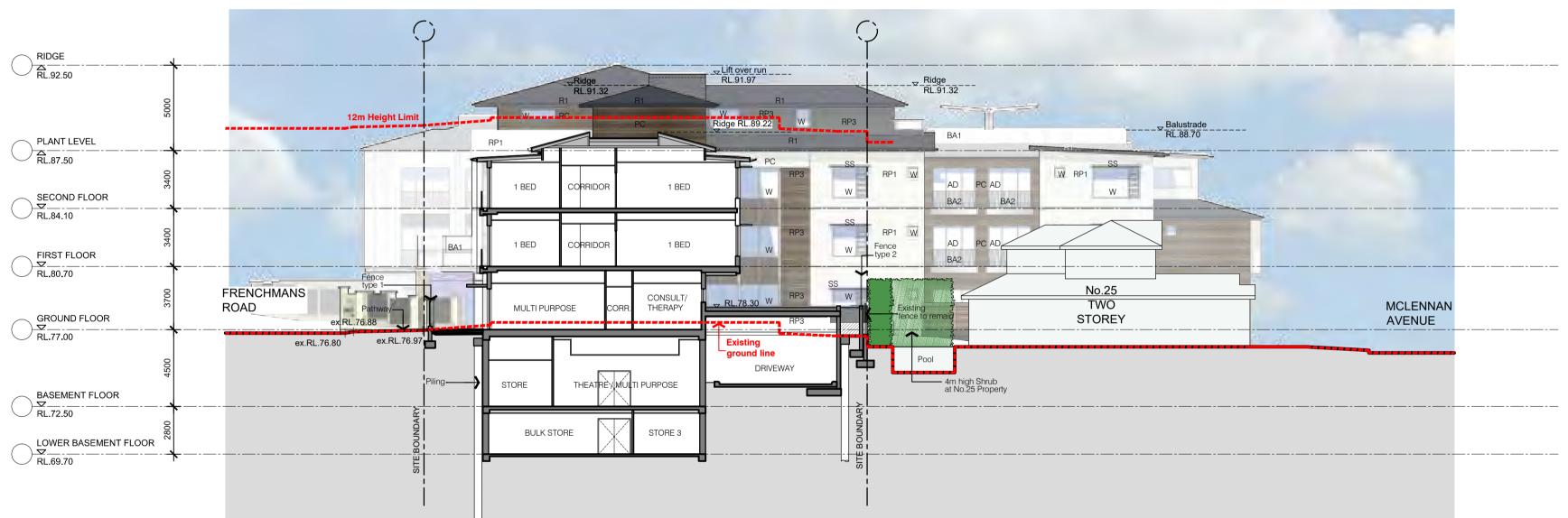
⊖ Bo	nis document, information and design concepts shown in it are copyright to offa Robertson Group. Any inconsistencies between drawn information and urrent Codes and Standards are to be notified immediately.
LEGE	IND
AD	ALUMINIUM FRAMED DOORS
BA1	BALUSTRADE - TYPE 1 (GLASS)
BA2	BALUSTRADE - TYPE 2 (DECORATIVE GRILLE)
EGL	EXISTING GROUND LINE
FGL	FINISHED GROUND LINE
LV1	LOUVRE - POWDER COATED
LV2	LOUVRE DECORATIVE
PC	PREFINISHED CLADDING (TIMBER LOOK)
PFS	PERFORATED SCREEN - POWDER COATED
PS	1800H PRIVACY SCREEN
R1	ROOF, GUTTER, DP - TYPE 1 (CORRUGATED COLORBOND, COLOR IRONSTONE)
RP1	RENDERED PAINTED WALL - COLOUR WHITE
RP2	RENDERED PAINTED WALL - COLOUR BROWN
RP3	RENDERED PAINTED WALL - COLOUR GREY
RS	ROLLER SHUTTER - SILVER
RW	RETAINING WALL - STONE CLADDING
SS	SUN SHADING
ST	STONE CLADING
W	ALUMINIUM FRAMED WINDOWS
FENC	CE TYPES
F1	1800H POWDER COATED STEEL BLADE SECURITY FENCE ON MASONRY WALL RENDERED AND PAINTED WITH 400 X400 X1950H MASONRY COLUMN POST RENDERED AND PAINTED FINISH
F2	1800H COLORBOND STEEL FENCING ON MASONRY WALL RENDERED AND PAINTED + EXISTING FENCE

7	Preliminary DA Issue	30.09.2020
6	Development Application Issue	07.09.2020
5	Development Application Issue for review	14.08.2020
4	Development Application Issue for review	11.08.2020
3	Development Application Issue	19.12.19
2	Preliminary Issue	19.11.19
1	Preliminary Issue	27.08.19
No.	Amendment	Date

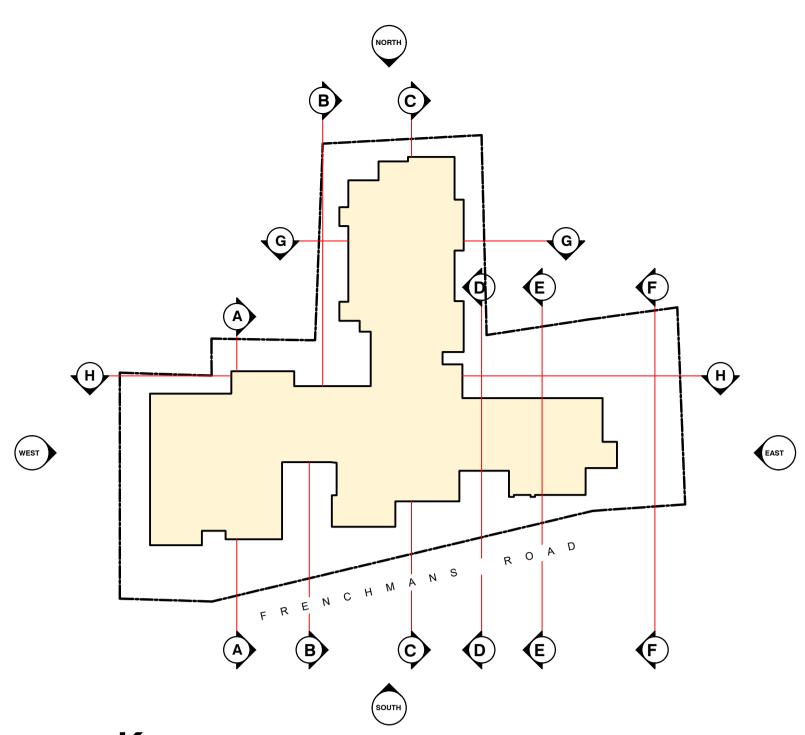

Project FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing

SECTIONS (A, B & C)

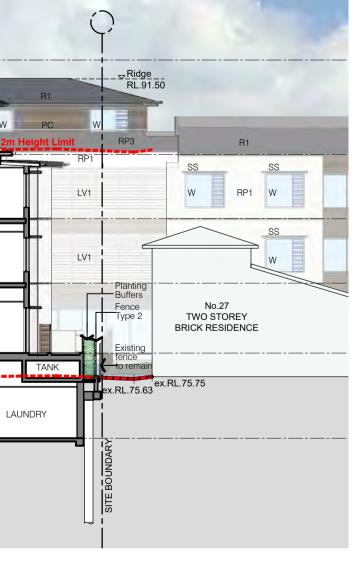



boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net



06 Section F Scale 1:200



Key plan

RIDGE RL.92.50	+-	Ridge		over run 01.97					
	2000		R1	Private Courtyard Screen	RES	IDENT DOOR	R1 DECK		w 121
SECOND FLOOR	3400	W RP1 W W		E/S	E/S	STO.	CORRI.	1 BED	
	3400	SS SS SS W Planting	RP1 Private Courtyard	E/S	E/S	STO.	CORRI.	1 BED	
GROUND FLOOR	3700	No.25 TWO STOREY BRICK RESIDENCE Fence Type 2 - Existing fence	Screen	E/S	E/S	STO.	, CORRI.	1 BED	_
BASEMENT FLOOR	4500	to remain	75.95	Existing ground line – KITCHEN	wc	STAFF	CORRID	OR WC/SHR	l
C RL.72.50	r		SITE BOUNDARY				_		
	07	Section G							

(07) Section G Scale 1:200

Bo	is document, information and design concepts shown in it are copyright to ffa Robertson Group. Any inconsistencies between drawn information and rrent Codes and Standards are to be notified immediately.
LEGE	ND
AD	ALUMINIUM FRAMED DOORS
BA1	BALUSTRADE - TYPE 1 (GLASS)
BA2	BALUSTRADE - TYPE 2 (DECORATIVE GRILLE)
EGL	EXISTING GROUND LINE
FGL	FINISHED GROUND LINE
LV1	LOUVRE - POWDER COATED
LV2	LOUVRE DECORATIVE
PC	PREFINISHED CLADDING (TIMBER LOOK)
PFS	PERFORATED SCREEN - POWDER COATED
PS	1800H PRIVACY SCREEN
R1	ROOF, GUTTER, DP - TYPE 1 (CORRUGATED COLORBOND, COLOR IRONSTONE)
RP1	RENDERED PAINTED WALL - COLOUR WHITE
RP2	RENDERED PAINTED WALL - COLOUR BROWN
RP3	RENDERED PAINTED WALL - COLOUR GREY
RS	ROLLER SHUTTER - SILVER
RW	RETAINING WALL - STONE CLADDING
SS	SUN SHADING
ST	STONE CLADING
W	ALUMINIUM FRAMED WINDOWS
FENC	E TYPES
F1	1800H POWDER COATED STEEL BLADE SECURITY FENCE ON MASONRY WALL RENDERED AND PAINTED WITH 400 X400 X1950H MASONRY COLUMN POST RENDERED AND PAINTED FINISH
F2	1800H COLORBOND STEEL FENCING ON MASONRY WALL RENDERED AND PAINTED + EXISTING FENCE

7	Preliminary DA Issue	30.09.2020
6	Development Application Issue	07.09.2020
5	Development Application Issue for review	14.08.2020
4	Development Application Issue for review	11.08.2020
3	Development Application Issue	19.12.19
2	Preliminary Issue	19.11.19
1	Preliminary Issue	27.08.19
No.	Amendment	Date

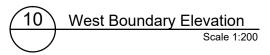
Project

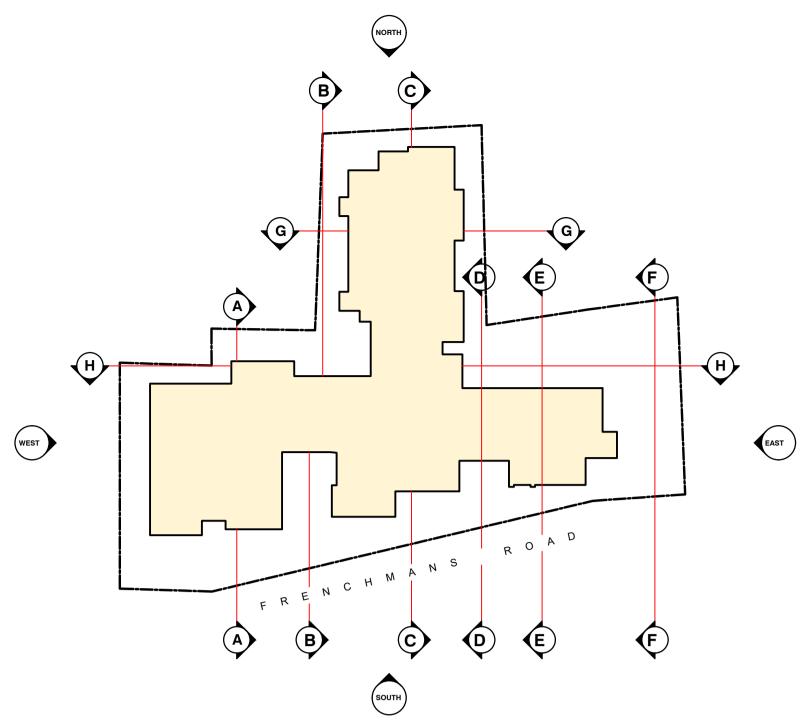
FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing

SECTIONS (D, E, F & G)

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net


Date JAN 2019 Job No. Drawin Scale AS SHOWN Drawn WW Amendment 7

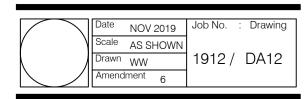


Key plan

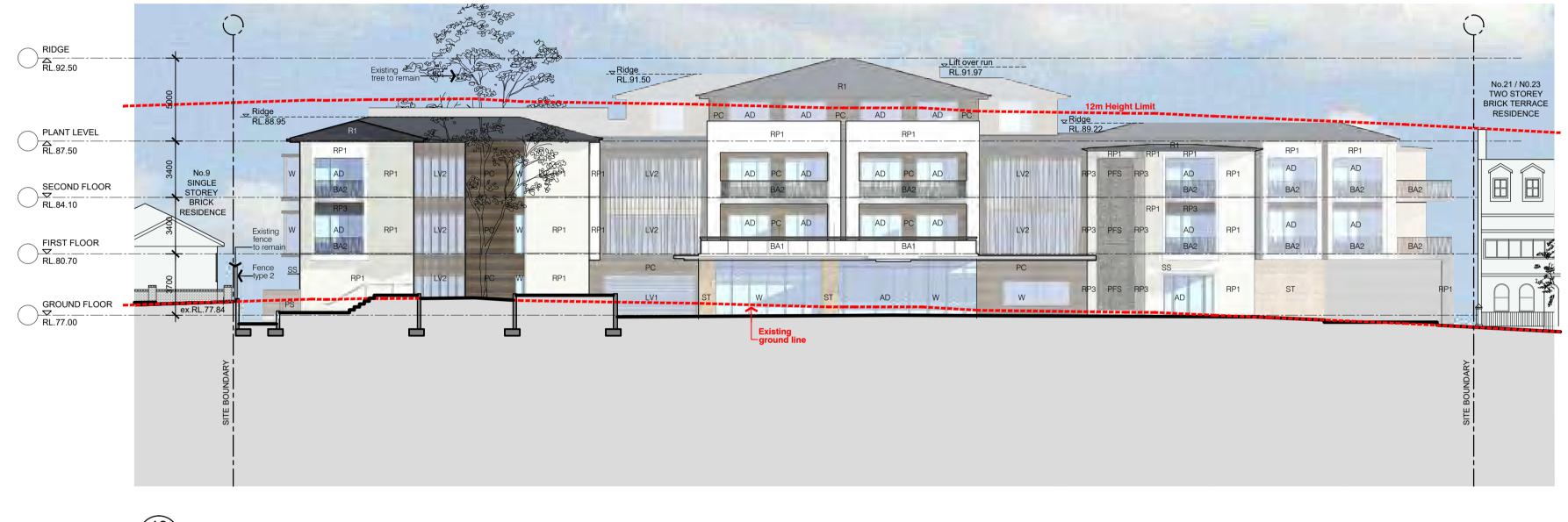
U Bo	is document, information and design concepts shown in it are copyright to ffa Robertson Group. Any inconsistencies between drawn information and rrent Codes and Standards are to be notified immediately.
LEGE	ND
AD	ALUMINIUM FRAMED DOORS
BA1	BALUSTRADE - TYPE 1 (GLASS)
BA2	BALUSTRADE - TYPE 2 (DECORATIVE GRILLE)
EGL	EXISTING GROUND LINE
FGL	FINISHED GROUND LINE
LV1	LOUVRE - POWDER COATED
LV2	LOUVRE DECORATIVE
PC	PREFINISHED CLADDING (TIMBER LOOK)
PFS	PERFORATED SCREEN - POWDER COATED
PS	1800H PRIVACY SCREEN
R1	ROOF, GUTTER, DP - TYPE 1 (CORRUGATED COLORBOND, COLOR IRONSTONE)
RP1	RENDERED PAINTED WALL - COLOUR WHITE
RP2	RENDERED PAINTED WALL - COLOUR BROWN
RP3	RENDERED PAINTED WALL - COLOUR GREY
RS	ROLLER SHUTTER - SILVER
RW	RETAINING WALL - STONE CLADDING
SS	SUN SHADING
ST	STONE CLADING
W	ALUMINIUM FRAMED WINDOWS
FENC	E TYPES
F1	1800H POWDER COATED STEEL BLADE SECURITY FENCE ON MASONRY WALL RENDERED AND PAINTED WITH 400 X400 X1950H MASONRY COLUMN POST RENDERED AND PAINTED FINISH
F2	1800H COLORBOND STEEL FENCING ON MASONRY WALL RENDERED AND PAINTED + EXISTING FENCE

6	Preliminary DA Issue	30.09.2020
5	Development Application Issue	07.09.2020
4	Development Application Issue for review	14.08.2020
3	Development Application Issue for review	11.08.2020
2	Development Application Issue	19.12.19
1	Preliminary Issue	19.11.19
No.	Amendment	Date

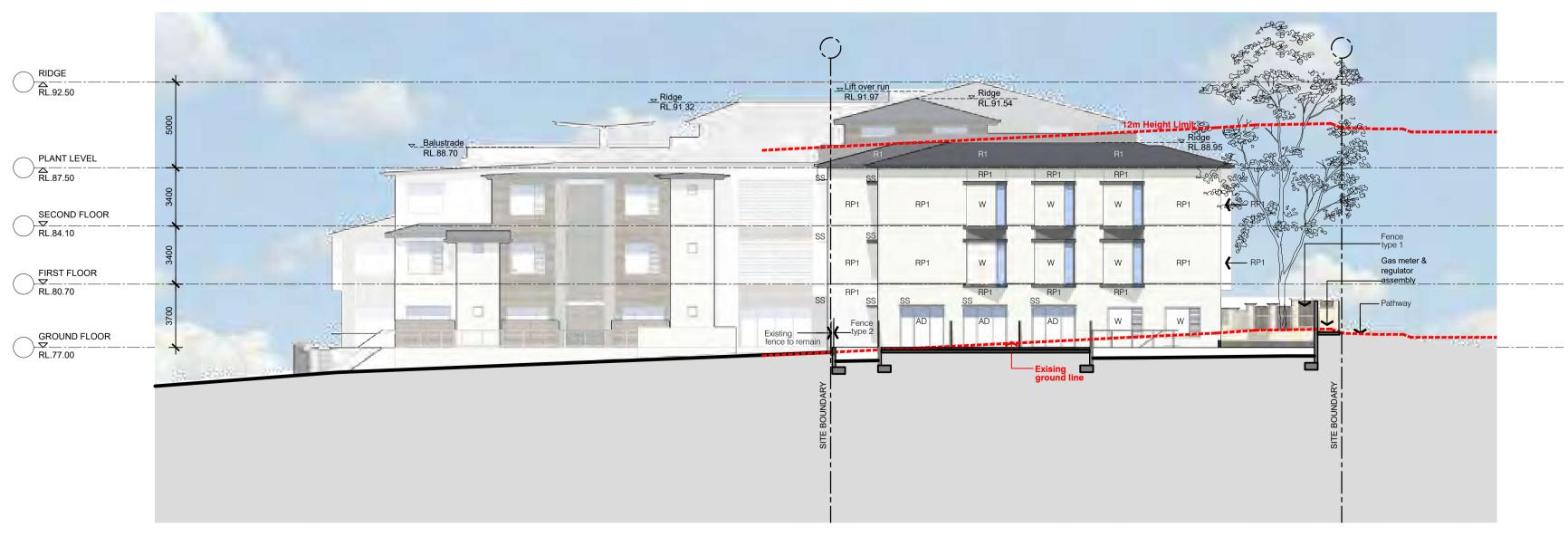
Project FRENCHMANS LODGE


11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing

SECTION H & ELEVATIONS (South & West Boundary)

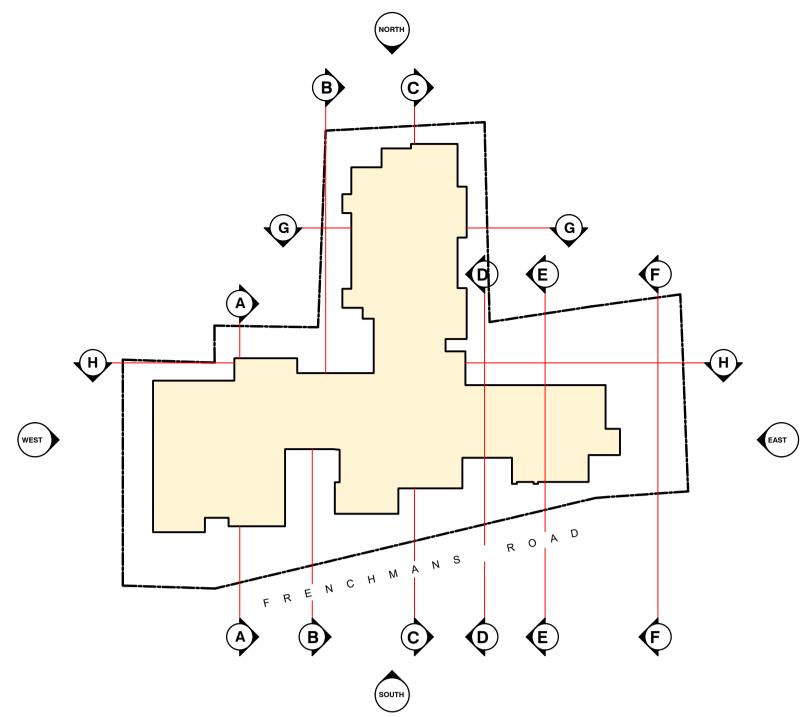

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net



RIDGE RL.92.50			∠lift over run RL.91.97			Ridge 8L.91.54	Ç.	
PLANT LEVEL	3400	No.25 TWO STOREY	SS North Control of Co	W RP1	12m Hein	ht Limit No.27 TWO STOREY	No.29 SINGLE STOREY	
$ \begin{array}{c} $	3700 3400		SS PC RP3 PC	W RP1 Existing tree to remain SS RP1 Existing tree to remain BA1 PC	SS			
		SITE BOUNDARY	Existing fence to remain	Existing ground line	ex.RL.75.24		SITE BOUNDARY	

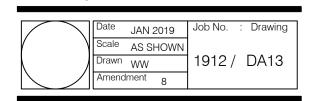
(11) NORTH ELEVATION Scale 1:200



Key plan

Bo	is document, information and design concepts shown in it are copyright to offa Robertson Group. Any inconsistencies between drawn information and rrrent Codes and Standards are to be notified immediately.
LEGE	IND
AD	ALUMINIUM FRAMED DOORS
BA1	BALUSTRADE - TYPE 1 (GLASS)
BA2	BALUSTRADE - TYPE 2 (DECORATIVE GRILLE)
EGL	EXISTING GROUND LINE
FGL	FINISHED GROUND LINE
LV1	LOUVRE - POWDER COATED
LV2	LOUVRE DECORATIVE
PC	PREFINISHED CLADDING (TIMBER LOOK)
PFS	PERFORATED SCREEN - POWDER COATED
PS	1800H PRIVACY SCREEN
R1	ROOF, GUTTER, DP - TYPE 1 (CORRUGATED COLORBOND, COLOR IRONSTONE)
RP1	RENDERED PAINTED WALL - COLOUR WHITE
RP2	RENDERED PAINTED WALL - COLOUR BROWN
RP3	RENDERED PAINTED WALL - COLOUR GREY
RS	ROLLER SHUTTER - SILVER
RW	RETAINING WALL - STONE CLADDING
SS	SUN SHADING
ST	STONE CLADING
W	ALUMINIUM FRAMED WINDOWS
FENC	E TYPES
F1	1800H POWDER COATED STEEL BLADE SECURITY FENCE ON MASONRY WALL RENDERED AND PAINTED WITH 400 X400 X1950H MASONRY COLUMN POST RENDERED AND PAINTED FINISH
F2	1800H COLORBOND STEEL FENCING ON MASONRY WALL RENDERED AND PAINTED + EXISTING FENCE

8	Preliminary DA Issue	30.09.2020
7	Development Application Issue	07.09.2020
6	Development Application Issue for review	14.08.2020
5	Development Application Issue for review	10.08.2020
4	Development Application Issue	19.12.19
3	Preliminary Issue	19.11.19
2	Preliminary Issue	18.09.19
1	Preliminary Issue	27.08.19
No.	Amendment	Date


Project FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing

ELEVATIONS (North, East, South & West)

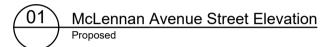
boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

Y	No.21 No.23 TWO TWO STOREY STOREY	No 25-27 FOUR STOREY	No.29 WWO STOREY	
				······
	<u> </u>			

5	Preliminary DA Issue	30.09.2020
4	Development Application Issue	07.09.2020
3	Development Application Issue for review	14.08.2020
2	Development Application Issue for review	12.08.2020
1	Development Application Issue	19.12.19
No.	Amendment	Date

4	Preliminary DA Issue	30.09.2020
3	Development Application Issue	07.09.2020
2	Development Application Issue for review	14.08.2020
А	Preliminary Issue	00.06.19
No.	No. Amendment	



boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

02 McLennan Avenue Street Elevation Existing

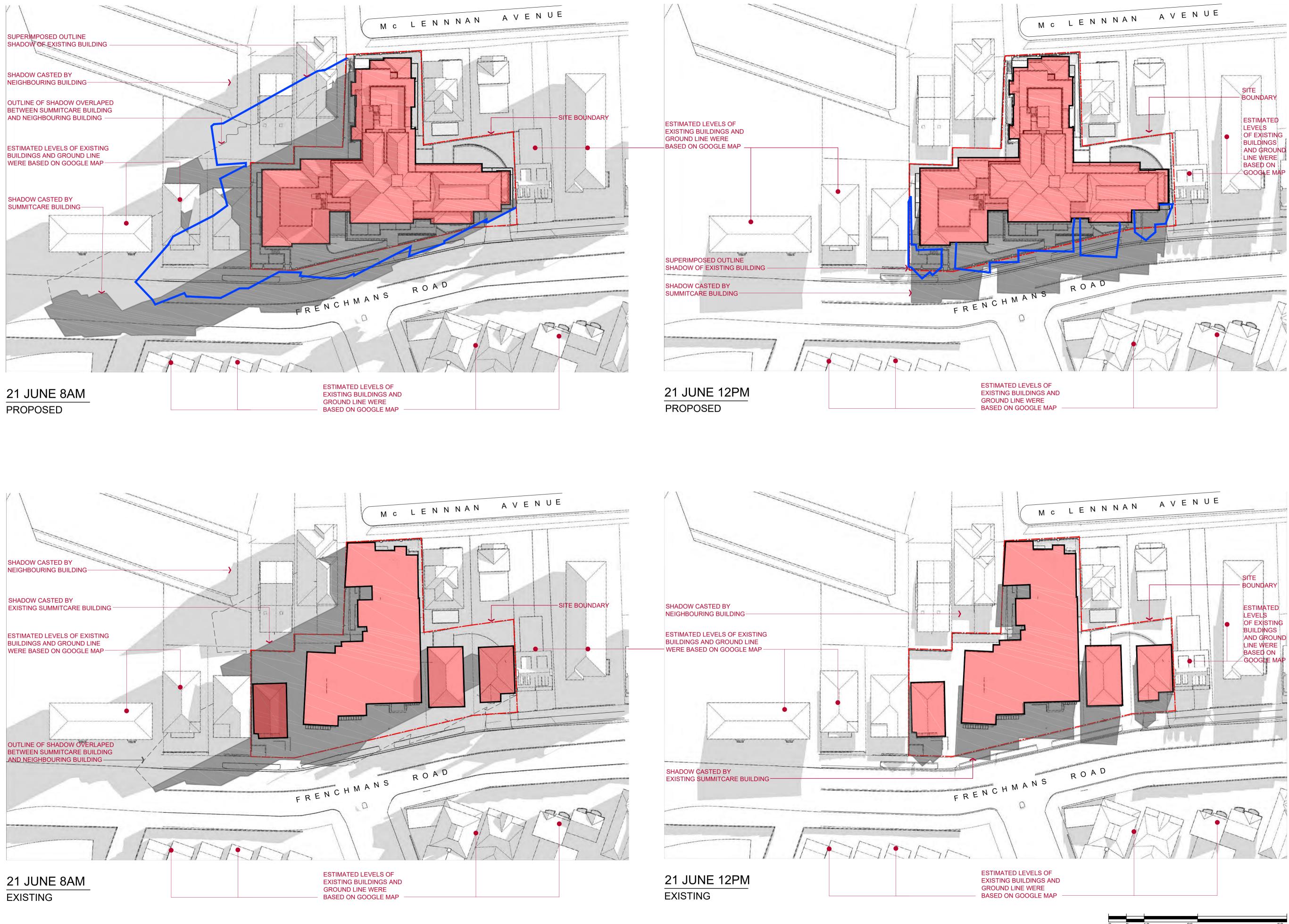
03 View from Chapel Street Proposed

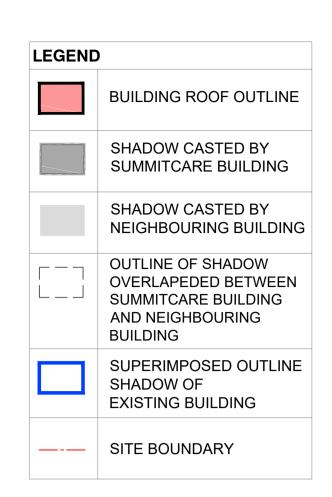
04 View from Chapel Street Existing

	4	Preliminary DA Issue	30.09.2020
	3	Development Application Issue	07.09.2020
	2	Development Application Issue for review	14.08.2020
	А	Preliminary Issue	00.06.19
	No. Amendment		Date
1			

Project

FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing


STREET ELEVATION @ MCLENNAN AVENUE -PHOTOMONTAGE



boffa robertson group architecture, health and aged care planning, project management

	Date JULY 2019	Job No. : Drawing
$\langle \rangle$	Scale NTS @ A1	
	^{Drawn} VI	2017 / DA16
	Amendment 4	

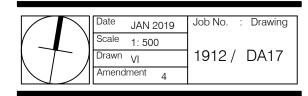
S C A L E : 1: 500 @ A1

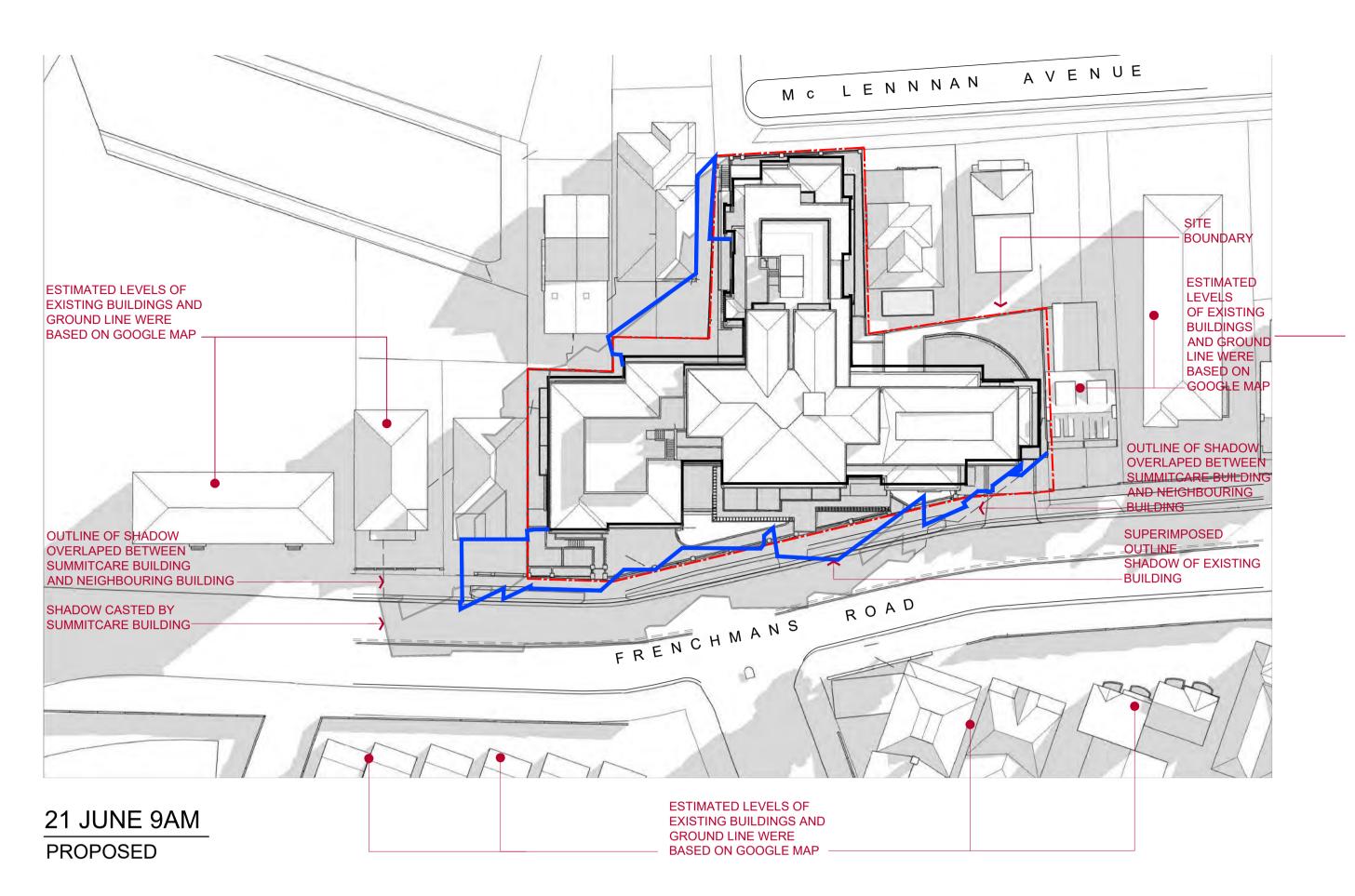
SCALE: 1: 1000 @ A3

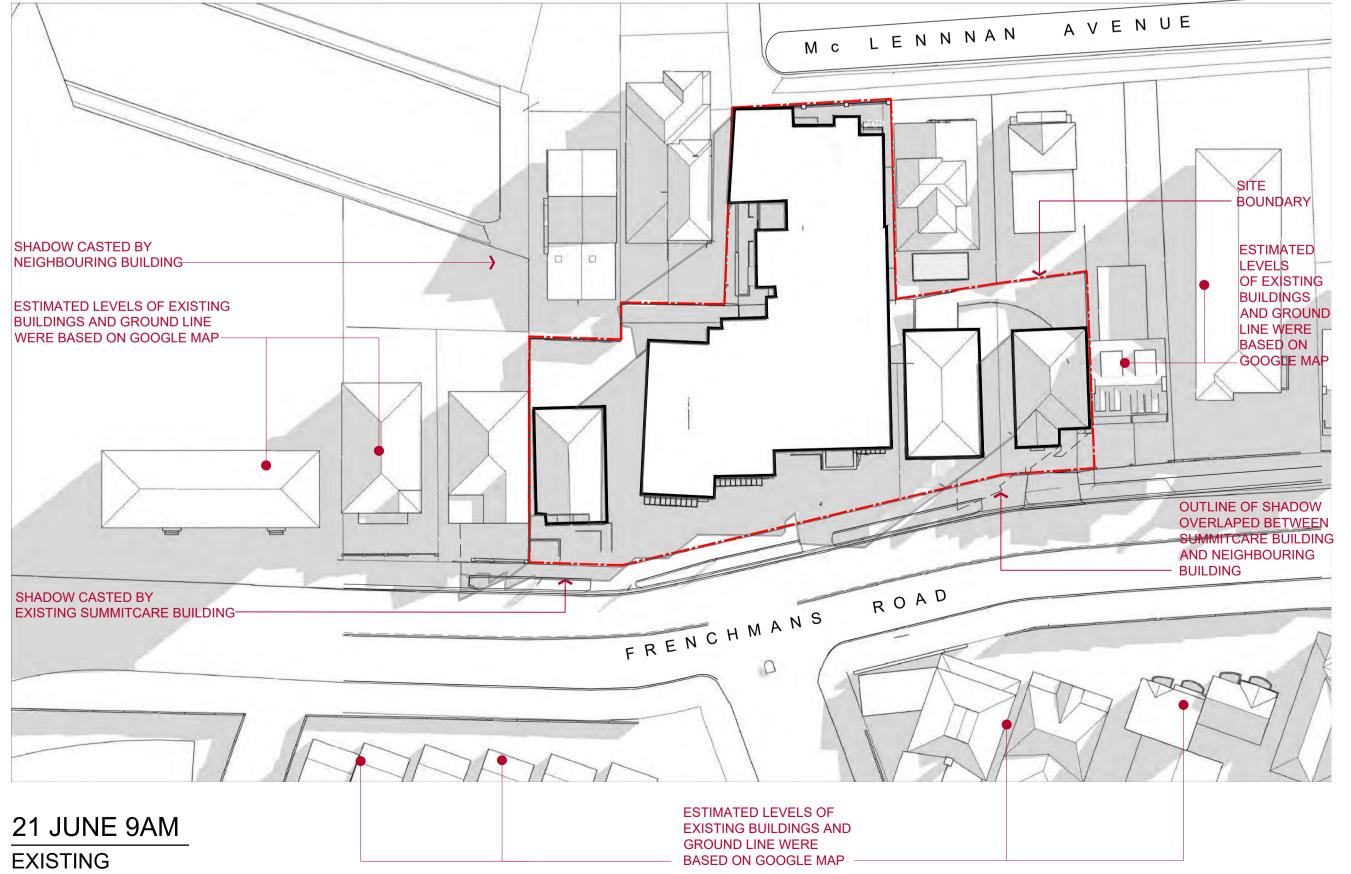
3 D	Development Application Issue	
	revelopment Application issue	07.09.2020
2 D	Development Application Issue for review	14.08.2020
1 D	Development Application Issue	19.12.19
No. A	Amendment	Date

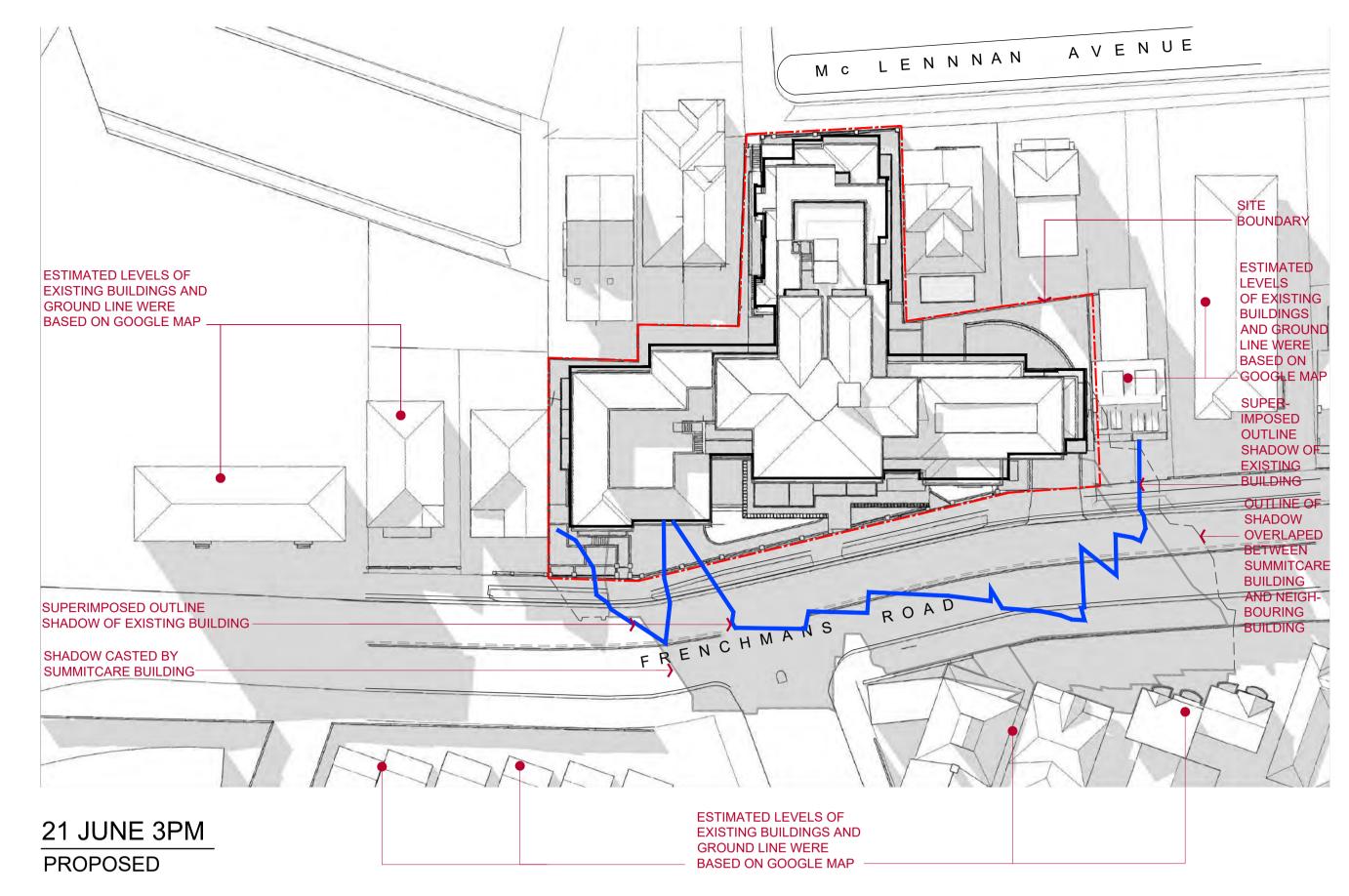
FRENCHMANS LODGE

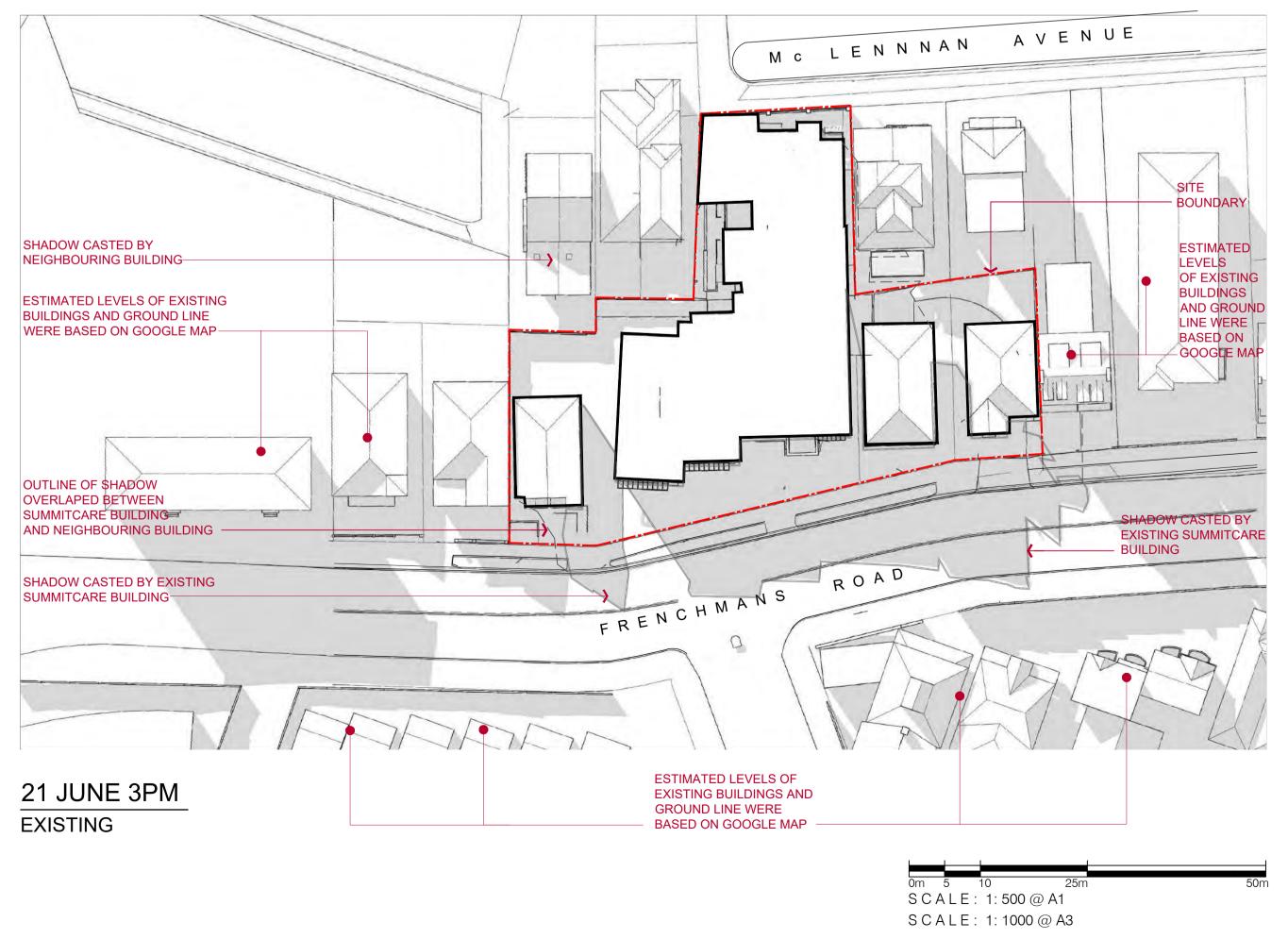
11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing

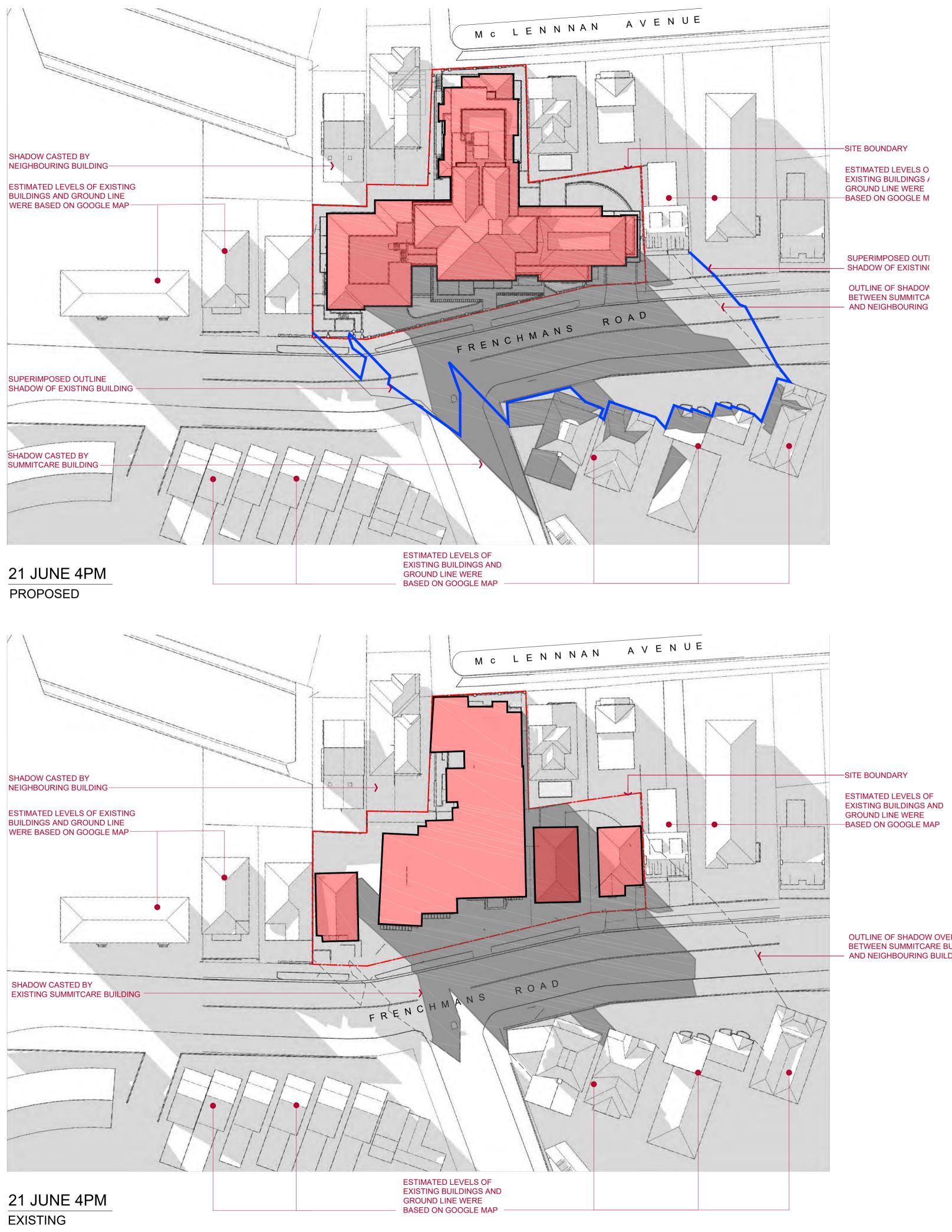

SHADOW DIAGRAMS


Existing & Proposed- 21June 8am & 12pm




boffa robertson group architecture, health and aged care planning, project management





LEGEND	
	BUILDING ROOF OUTLINE
	SHADOW CASTED BY SUMMITCARE BUILDING
	SHADOW CASTED BY NEIGHBOURING BUILDING
	OUTLINE OF SHADOW OVERLAPEDED BETWEEN SUMMITCARE BUILDING AND NEIGHBOURING BUILDING
	SUPERIMPOSED OUTLINE SHADOW OF EXISTING BUILDING
	SITE BOUNDARY

1	Preliminary DA Issue	30.10.20		
No.	Amendment	Date		
FR	Project FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK			
SH	Drawing SHADOW DIAGRAMS Existing & Proposed- 21June 9am & 3pm			
SUMMITCARE				
Architecture, health and aged care planning, project management Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7009 Email : brgroup@brgr.net				
	Scale 1: 500	: Drawing DA17a		

ESTIMATED LEVELS O EXISTING BUILDINGS / GROUND LINE WERE -BASED ON GOOGLE M

SUPERIMPOSED OUTI - SHADOW OF EXISTIN(

OUTLINE OF SHADOV **BETWEEN SUMMITCA** - AND NEIGHBOURING

OUTLINE OF SHADOW OVERLAPED BETWEEN SUMMITCARE BUILDING - AND NEIGHBOURING BUILDING

C This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and current Codes and Standards are to be notified immediately.

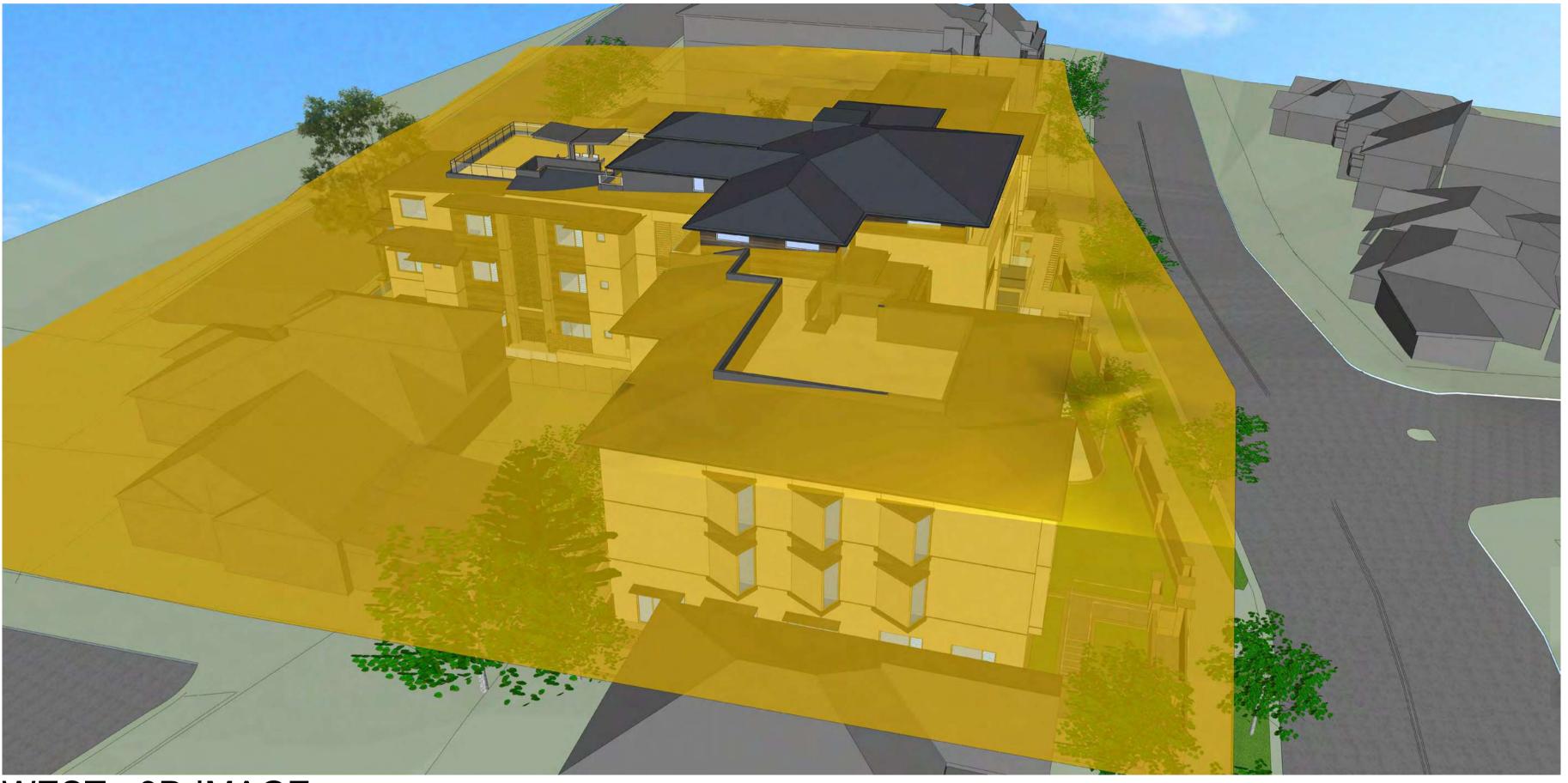
LEGEND)
	BUILDING ROOF OUTLINE
	SHADOW CASTED BY SUMMITCARE BUILDING
	SHADOW CASTED BY NEIGHBOURING BUILDING
	OUTLINE OF SHADOW OVERLAPEDED BETWEEN SUMMITCARE BUILDING AND NEIGHBOURING BUILDING
	SUPERIMPOSED OUTLINE SHADOW OF EXISTING BUILDING
	SITE BOUNDARY

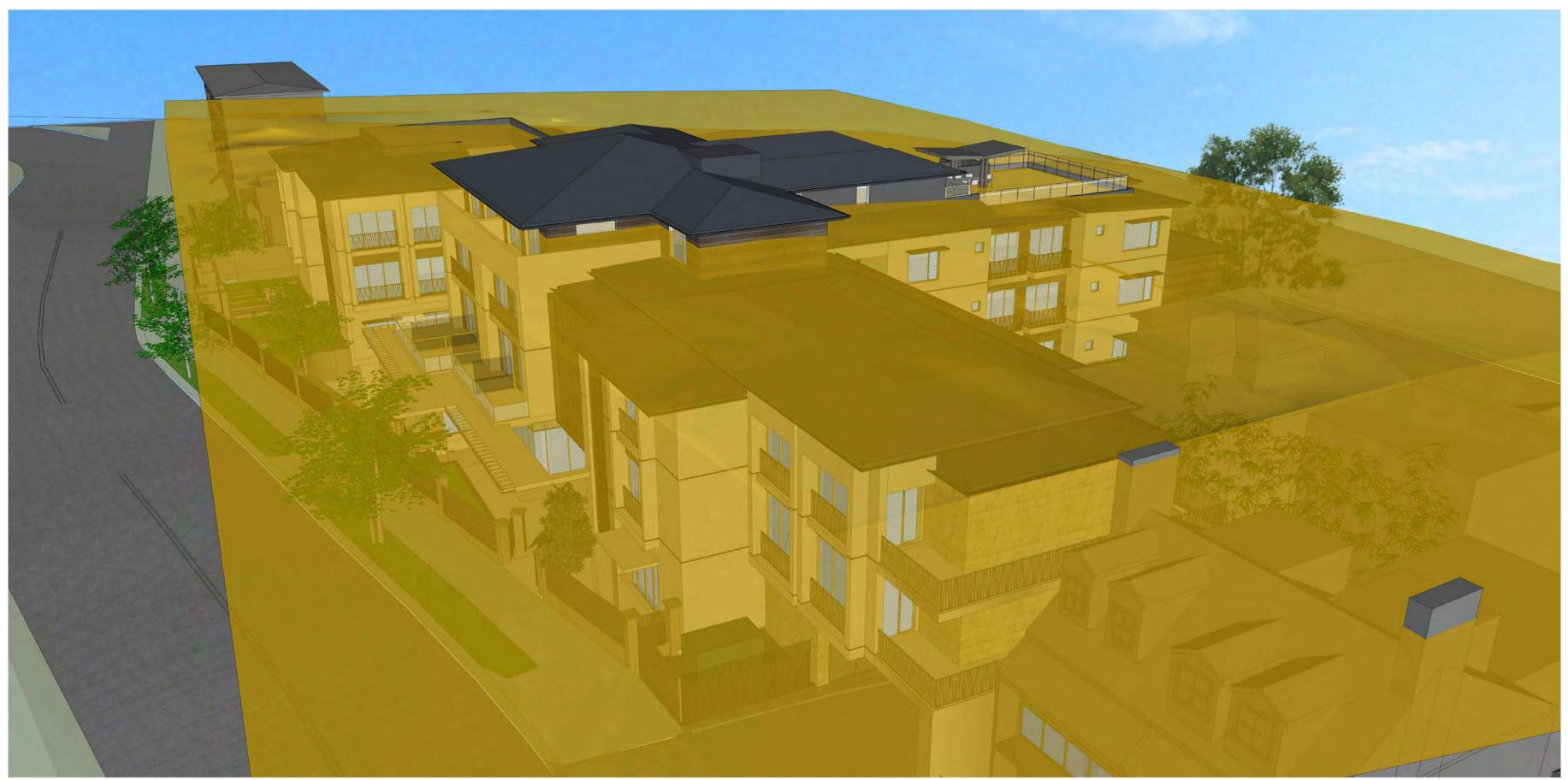
4	Preliminary DA Issue	30.09.2020		
3	Development Application Issue	07.09.2020		
2	Development Application Issue for review	14.08.2020		
1	Development Application Issue	19.12.19		
No.	Amendment	Date		
Proj	Project			

FRENCHMANS LODGE

11-15, 17 & 19 Frenchmans Road, RANDWICK

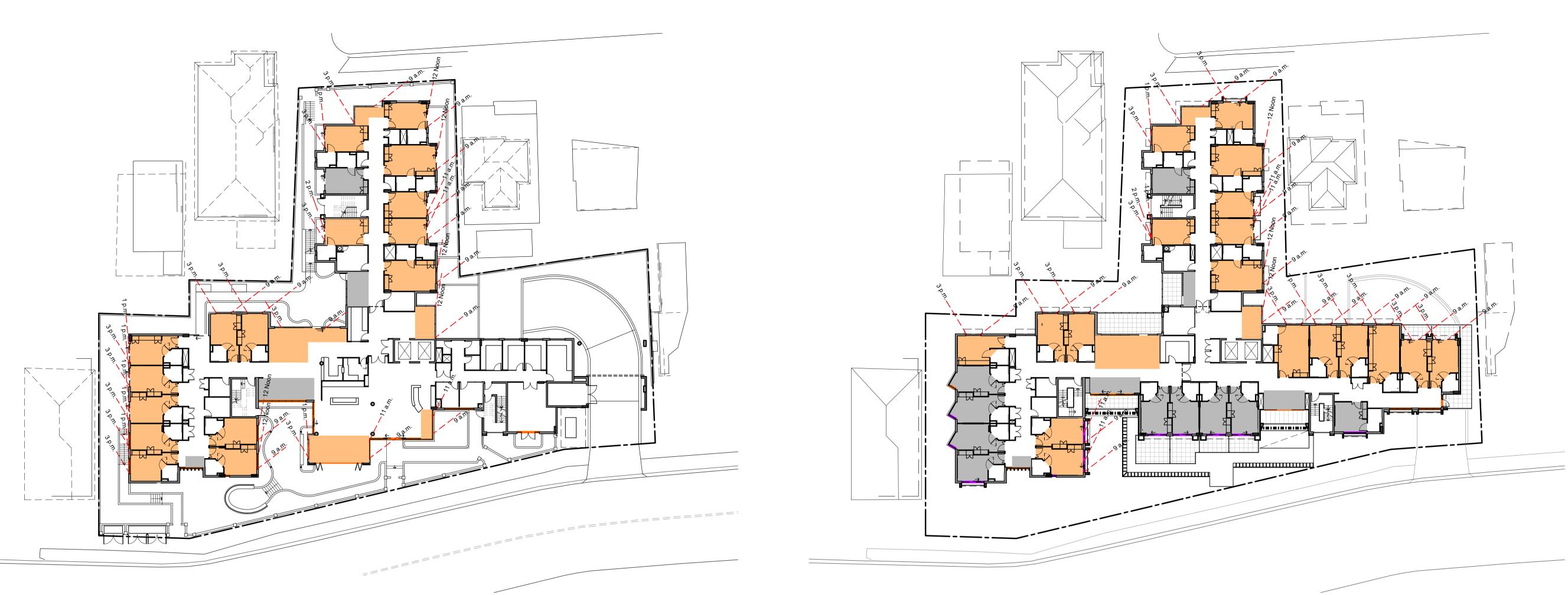
Drawing SHADOW DIAGRAMS


Existing & Proposed- 21June 4pm

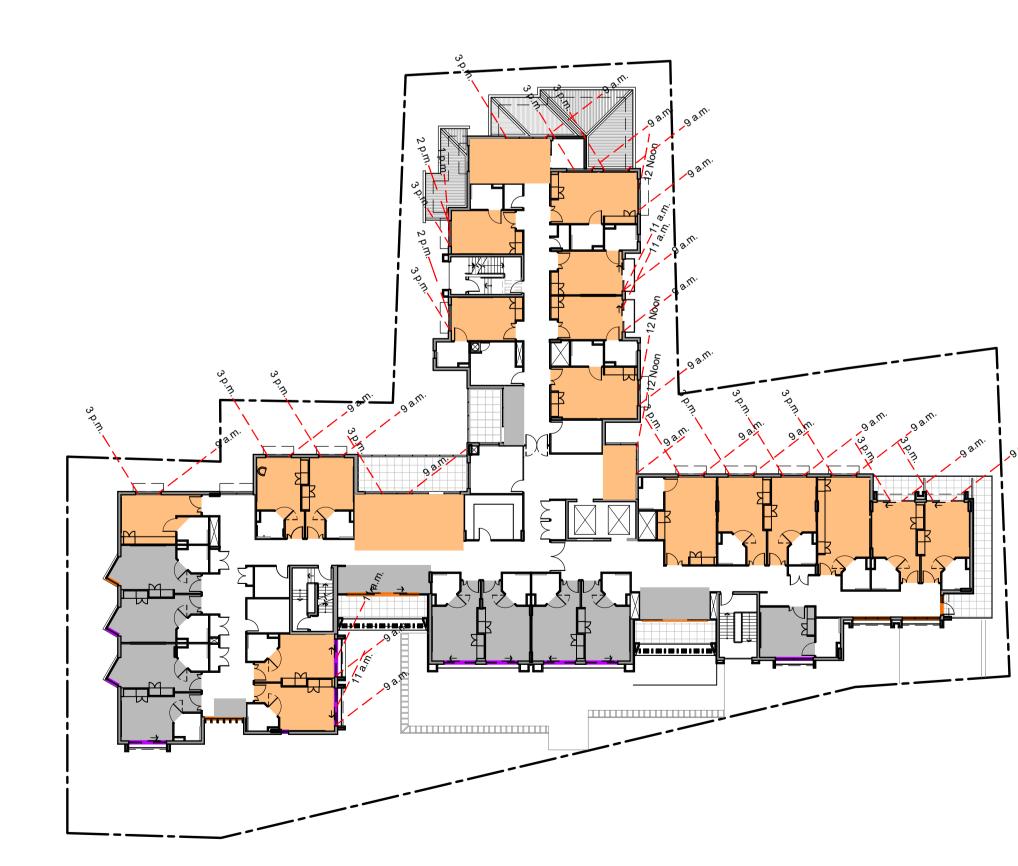

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

WEST - 3D IMAGE

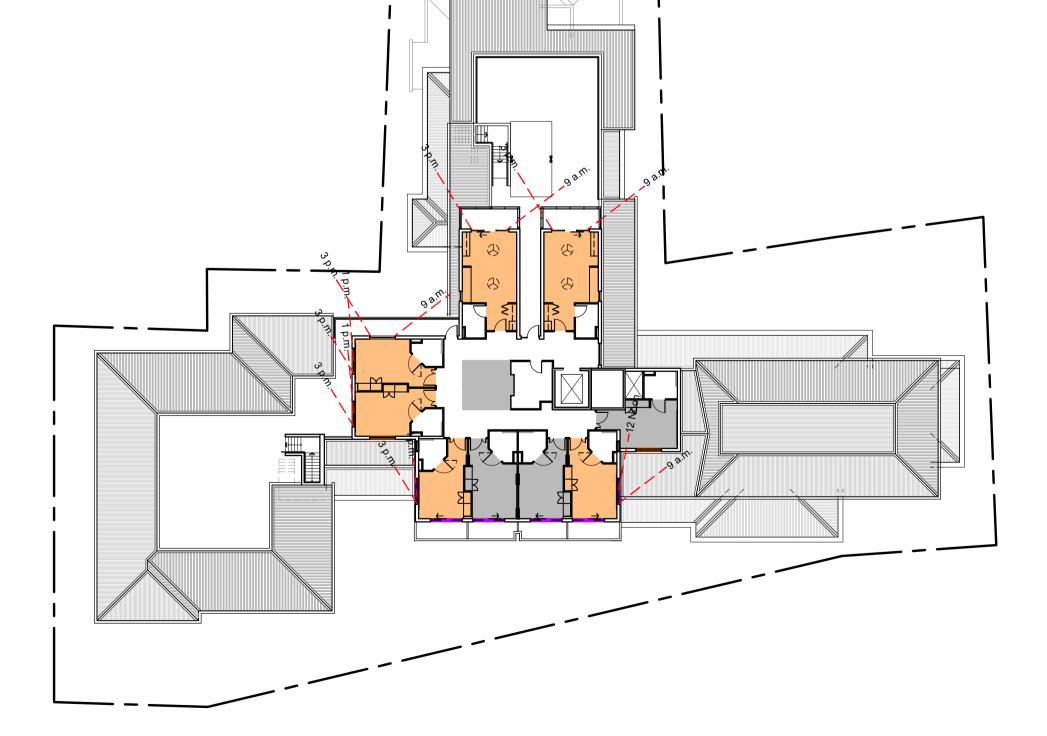


EAST - 3D IMAGE

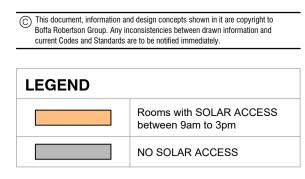

The above graphics are showing the 3D model of the proposed development with the 12m height control represented by a yellow coloured plane. These images demonstrate the extent of built form that penetrates the height control

1 Preliminary DA Issue 30.09.2020 No. Amendment Date Project FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK Drawing 3D IMAGE Showing built form penetrating 12m height SUMMITCARE boffa robertson group re, health and aged care planni Suite 7, Level 1 Epica, 9 Railway Stree Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.ne JAN 2019

DateJAN 2019Job No. : DrawingScale1:5001912 / DA18aDrawnSS1912 / DA18a



GROUND FLOOR PLAN



SECOND FLOOR PLAN

THIRD FLOOR PLAN

FIRST FLOOR PLAN

20m
30.09.202
07.09.202
14.08.202
Date

FRENCHMANS LODGE 11-15, 17 & 19 Frenchmans Road, RANDWICK


Drawing SOLAR ACCESS DIAGRAMS

boffa robertson group architecture, health and aged care planning, project management

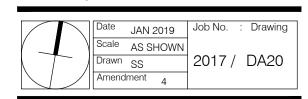
Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

GROSS FLOOR AREA SEPP 2004 GROSS FLOOR AREA (VERTICAL VILLAGE) LOWER -BASEMENT.FL. BASEMENT.FL. -GROUND FL. 905.8 m² FIRST FL. 1,278.9 m² SECOND FL. 1,231.0 m² THIRD FL. 369.6 m² TOTAL 3,785.2 m²

4	Preliminary DA Issue	30.09.2020
3	Development Application Issue	07.09.2020
2	Development Application Issue for review	14.08.2020
1	Development Application Issue for review	11.08.2020
No.	Amendment	Date

Project SUMMIT CARE

11-19 Frenchmans Road, Randwick


Drawing

GROSS FLOOR AREA DIAGRAM -GROUND FLOOR PLAN

boffa robertson group architecture, health and aged care planning, project management

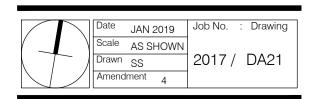
Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net ĮΟČ

0m 2 5 SCALE: 1: 200 @ A1 SCALE: 1: 400 @ A3

GROSS FLOOR AREA SEPP 2004 GROSS FLOOR AREA (VERTICAL VILLAGE) LOWER -BASEMENT.FL. BASEMENT.FL. -GROUND FL. 905.8 m² 1,278.9 m² FIRST FL. SECOND FL. 1,231.0 m² THIRD FL. 369.6 m² TOTAL 3,785.2 m²

4	Preliminary DA Issue	30.09.2020
З	Development Application Issue	07.09.2020
2	Development Application Issue for review	14.08.2020
1	Development Application Issue for review	11.08.2020
No.	Amendment	Date
Droid	act	
	3 2 1	 3 Development Application Issue 2 Development Application Issue for review

Project SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing

GROSS FLOOR AREA DIAGRAM -FIRST FLOOR PLAN

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

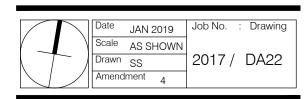
15m

EXCLUDED AREA GFA : 107.6m²

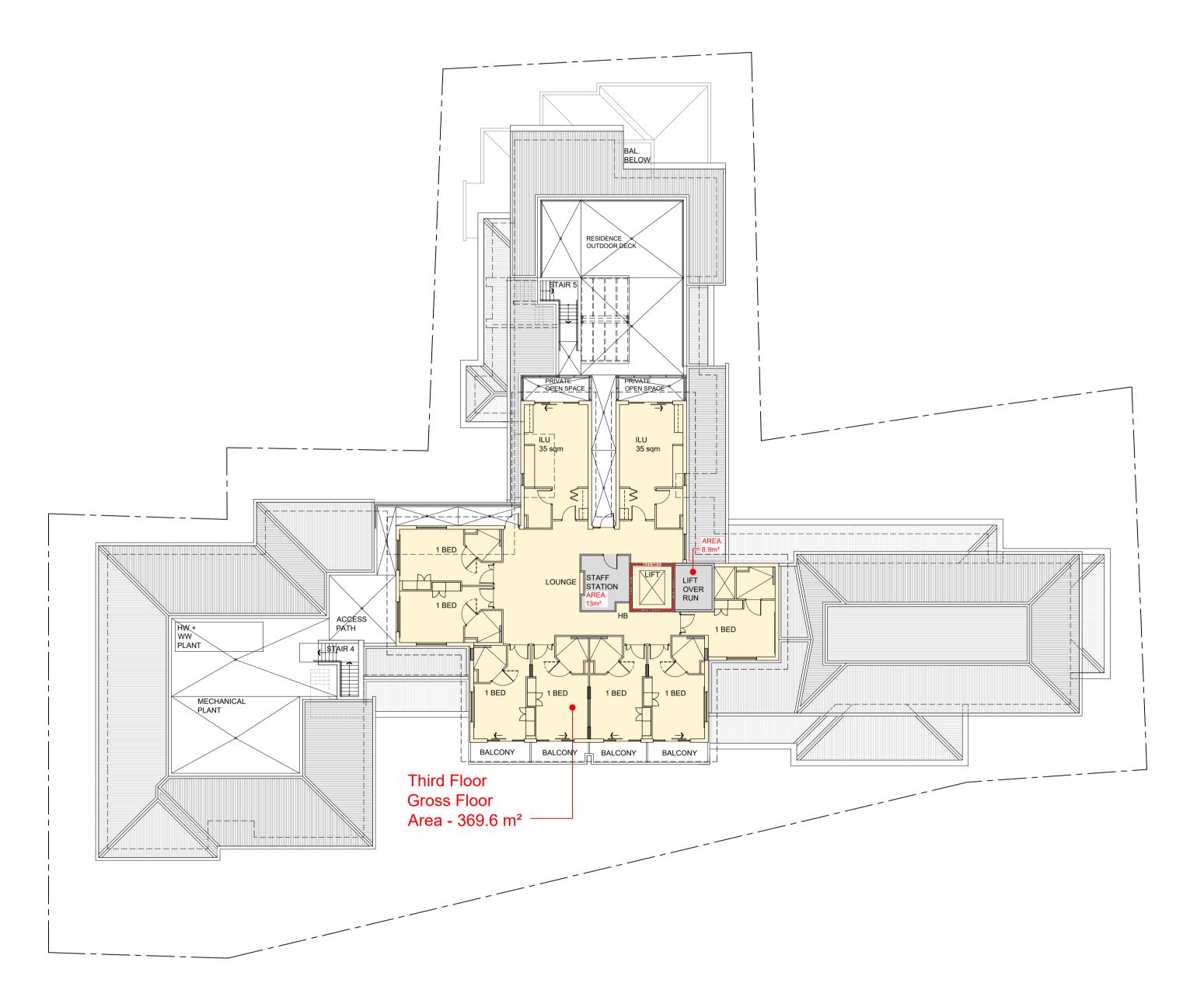
GROSS FLOOR AREA SEPP 2004 GROSS FLOOR AREA (VERTICAL VILLAGE) LOWER -BASEMENT.FL. BASEMENT.FL. -GROUND FL. 905.8 m² FIRST FL. 1,278.9 m² SECOND FL. 1,231.0 m² THIRD FL. 369.6 m² TOTAL 3,785.2 m²

4	Preliminary DA Issue	30.09.2020
3	Development Application Issue	07.09.2020
2	Development Application Issue for review	14.08.2020
1	Development Application Issue for review	11.08.2020
No.	Amendment	Date
Droi	oot	

Project SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing

GROSS FLOOR AREA DIAGRAM -SECOND FLOOR PLAN



boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

15m

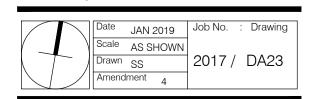
EXCLUDED AREA GFA : 21.3 m²

GROSS FLOOR AREA SEPP 2004 GROSS FLOOR AREA (VERTICAL VILLAGE) LOWER -BASEMENT.FL. BASEMENT.FL. -GROUND FL. 905.8 m² FIRST FL. 1,278.9 m² SECOND FL. 1,231.0 m² THIRD FL. 369.6 m² TOTAL 3,785.2 m²

4	Preliminary DA Issue	30.09.2020
3	Development Application Issue	07.09.2020
2	Development Application Issue for review	14.08.2020
1	Development Application Issue for review	11.08.2020
No.	Amendment	Date
Proi	act	
	3 2 1 No.	 3 Development Application Issue 2 Development Application Issue for review

Project

SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing

GROSS FLOOR AREA DIAGRAM -THIRD FLOOR PLAN

boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

15m

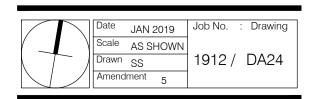
© This document, information and design concepts shown in it are copyright to Boffa Robertson Group. Any inconsistencies between drawn information and current Codes and Standards are to be notified immediately.

LEGEND	
	BOUNDARY
	EXISTING WALLS, DOORS, WINDOWS, FENCE, RETAINING WALL, SANITARY's, DRIVEWAY, PATH, PIT, SERVICES TO BE REMOVED
	EXISTING FENCE TO BE RETAINED
	EXISTING TREES TO REMAIN
· ·	TREES TO BE REMOVED
+ ex.RL.0.0	EXISTING LEVELS
RL.00.00	PROPOSED LEVELS

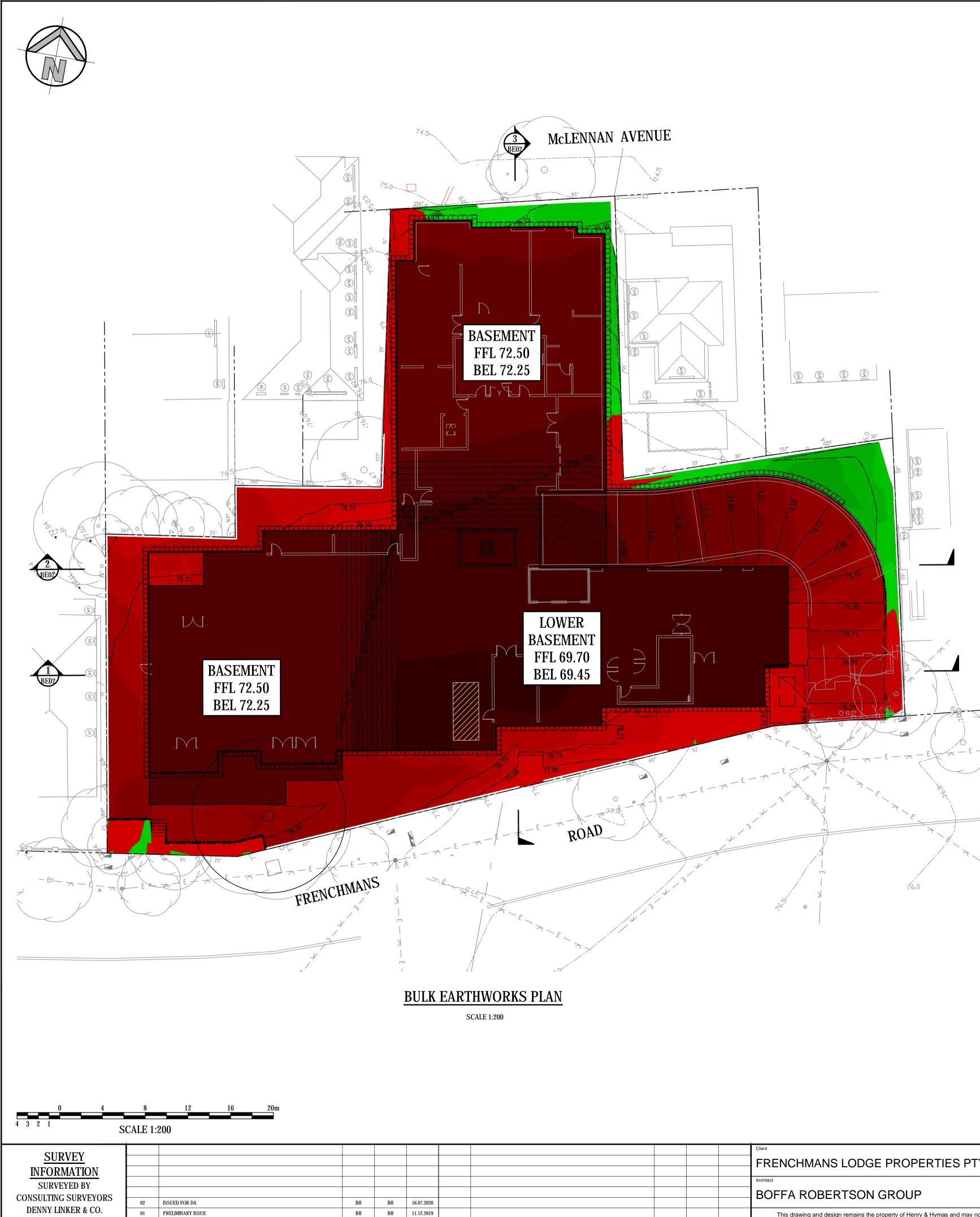
5	Preliminary DA Issue	30.09.2020
4	Development Application Issue	07.09.2020
3	Development Application Issue for review	14.08.2020
2	Development Application Issue for review	11.08.2020
1	Development application issue	19.12.19
No.	Amendment	Date

Project

SUMMIT CARE 11-19 Frenchmans Road, Randwick


Drawing

DEMOLITION PLAN


boffa robertson group architecture, health and aged care planning, project management

Suite 7, Level 1 Epica, 9 Railway Street Chatswood NSW 2067 AUSTRALIA Tel. (02) 9406 7000 Fax. (02) 9406 7099 Email : brgroup@brgr.net

Appendix B Bulk Earthworks Plan

DATUM: A.H.D.

REVISION

AMENDMENT

DRAWN DESIGNED DATE REVISION

AMENDMENT

BULK EARTHWORKS GENERAL NOTES

REFER TO GEOTECHNICAL INVESTIGATION REPORT FOR INFORMATION RELATING TO EXISTING GROUND CONDITIONS, SITE TREATMENT AND SUPERVISION.

THE LOCATIONS OF UNDERGROUND SERVICES SHOWN ON THESE DRAWINGS HAVE BEEN PLOTTED FROM SURVEY AND AUTHORITY INFORMATION. THE SERVICE INFORMATION HAS BEEN PREPARED ONLY TO SHOW THE APPROXIMATE POSITIONS OF ANY KNOWN SERVICES AND MAY NOT BE AS CONSTRUCTED OR ACCURATE.

HENRY AND HYMAS PTY LTD CANNOT GUARANTEE THAT THE SERVICES INFORMATION SHOWN ON THESE DRAWINGS, ACCURATELY INDICATES THE PRESENCE OR ABSENCE OF SERVICES OR THEIR LOCATION AND WILL ACCEPT NO LIABILITY FOR INACCURACIES IN THE SERVICES INFORMATION SHOWN ARISING FROM ANY CAUSE WHATSOEVER. CONTRACTORS ARE TO CONTACT THE RELEVANT SERVICE AUTHORITY PRIOR TO COMMENCEMENT OF EXCAVATION.

FOR COMMENCEMENT OF WORKS ON SITE, SEARCH RESULTS ARE TO BE KEPT ON SITE AT ALL TIMES.

ALL SERVICES ARE TO BE LOCATED AND CUT OFF PRIOR TO THE COMMENCEMENT OF EXCAVATION AND FILLING OPERATIONS.

ALL TOP SOIL, ORGANIC MATTER AND FILL MATERIAL SHALL BE REMOVED FROM ALL AREAS UNDER BUILDING AND CARPARK LOCATIONS TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER. AREAS TO BE FULLY STRIPPED OF EXISTING FILL AND DARK BROWN BLACK UPPER ORGANIC ALLUVIUM.

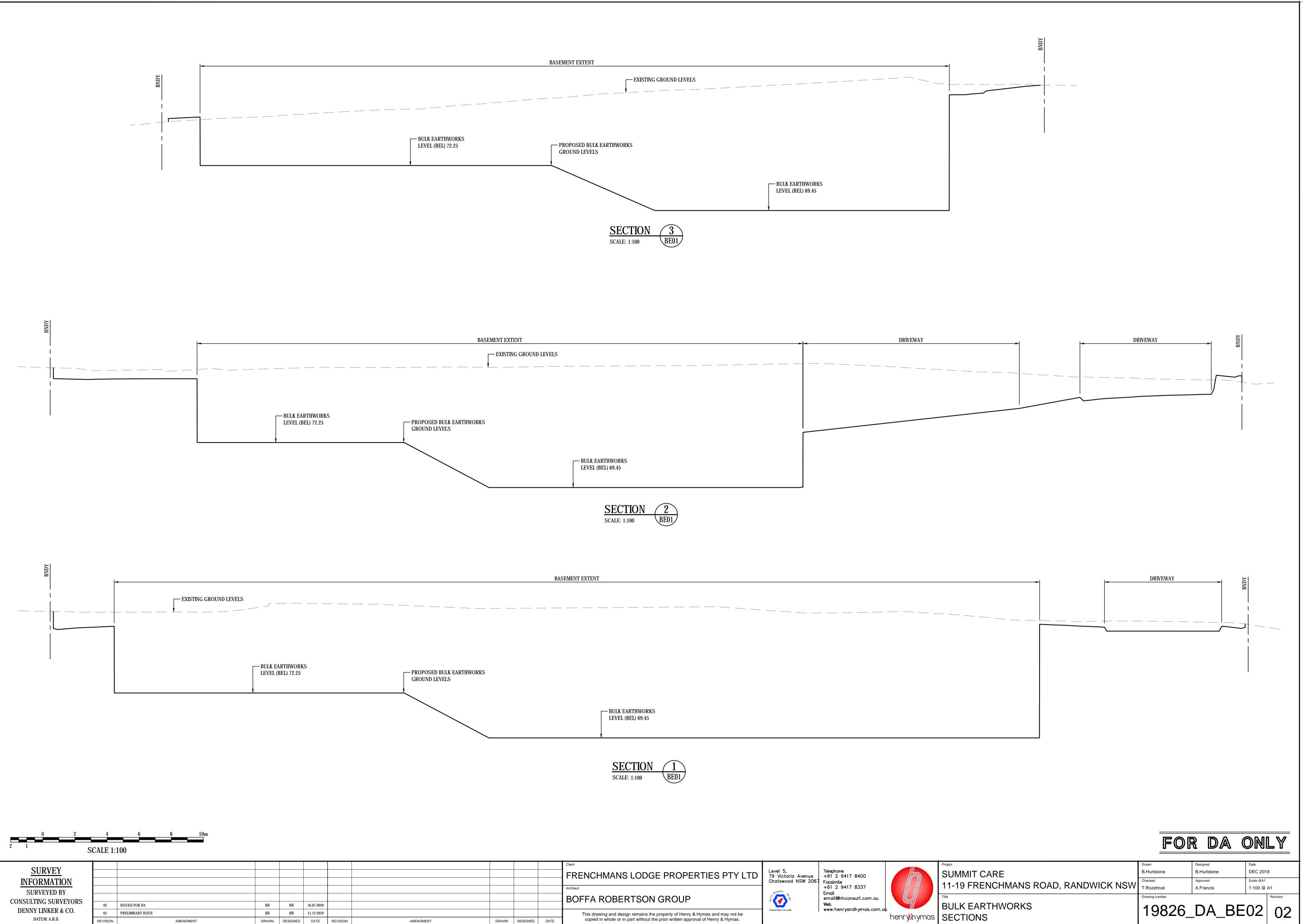
UPON COMPLETION OF STRIPPING AND PRIOR TO PLACEMENT OF FILL THE ENTIRE SITE SHALL BE PROOF ROLLED WITH A MINIMUM OF 6 PASSES OF A VIBRATOR PADFOOT ROLLER OF NOT LESS THEN 9 TONNE MINIMUM DEAD WEIGHT OR AS SPECIFIED IN THE GEOTECHNICAL REPORT. ANY SOFT OR HEAVING AREAS SHALL BE REMOVED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO A MINIMUM DEPTH OF 500mm AND THEN BACKFILLED WITH APPROVED MATERIAL IN 200mm THICK LOOSE LAYERS COMPACTED TO 98% OF STANDARD MAX. DRY DENSITY AND TO WITHIN +/-2% OF STANDARD OPTIMUM MOISTURE CONTENT. APPROVED BACKFILL MATERIAL MAY BE CRUSHED ROCK OR SANDY LOAM WITH A PLASTICITY INDEX LESS THAN 15%.

IMPORTED FILLING:

THE CONTRACTOR WILL IMPORT SUITABLE FILL FROM AN EXTERNAL SOURCE. EXCAVATION MATERIALS MEETING THE REQUIRED SPECIFICATION MAY BE USED AS FILL. THIS MAY INCLUDE RECYCLED MATERIALS IF THEY ARE SUITABLY BLENDED/CONDITIONED TO MEET MATERIALS SPECIFICATIONS.

COMPACTION REQUIREMENTS

- 1. PREPARATION FOR PAVEMENT: CLEAR SITE, STRIP TOP-SOIL, CUT AND FILL AND PREPARATIONS OF SUB-GRADE SHALL BE AS DESCRIBED IN " SUBGRADE PREPARATION".
- 2. SUB-GRADE SHALL BE COMPACTED TO 98% STANDARD DRY DENSITY RATIO AT OPTIMUM MOISTURE CONTENT ± 2% IN ACCORDANCE WITH AS 1289 5.1.1., TOP 300MM TO 100% SDD.
- 3. LOWER BASE COURSE SHALL BE CONSTRUCTED FROM CRUSHED SANDSTONE COMPACTED TO 100% STANDARD DRY DENSITY RATIO AT OPTIMUM MOISTURE CONTENT ± 2% IN ACCORDANCE WITH AS 1289 5.1.1. OF THICKNESS NOTED ON DRAWINGS.
- BASE COURSE SHALL BE CONSTRUCTED FROM FINE CRUSHED ROCK COMPACTED TO 100% STANDARD DRY DENSITY RATIO AT OPTIMUM MOISTURE CONTENT ± 2% IN ACCORDANCE WITH AS 1289 5.1.1 OF THICKNESS NOTED ON DRAWINGS.
- WEARING SURFACE SHALL BE ASPHALTIC CONCRETE TO STANDARD SPECIFICATION, MINIMUM THICKNESS = 30mm U.N.O.
- 6. TESTING OF THE SUBGRADE AND PAVEMENT LAYERS SHALL BE CARRIED OUT BY APPROVED N.A.T.A. REGISTERED LABORATORY.


							FO	r D/	<u>a on</u>	LY
		Client				Project	Drawn	Designed	Date	
		FRENCHMANS LODGE PROPERTIES PTY LTD	Level 5, 79 Victoria Avenue	Telephone +61 2 9417 8400		SUMMIT CARE	B.Hurlstone	L.Villa	DEC 201	19
			Chatswood NSW 2067	Facsimile		11-19 FRENCHMANS ROAD, RANDWICK NSW	Checked	Approved	Scale @A1	
		Architect	hanagemen /	+61 2 9417 8337 Email	iii iii	TI-19T KENCI IMANG KOAD, KANDINGK NOW	T.Rozehnal	A.Francis	1:200	
		BOFFA ROBERTSON GROUP	a gool	email@hhconsult.com.au		Title	Drawing number			Revision
			Global-Mark.com.au®	Web www.henryandhymas.com.au		BULK EARTHWORKS	19826			00
		This drawing and design remains the property of Henry & Hymas and may not be		· · · · · · · · · · · · · · · · · · ·		CUT/FILL PLAN	19020	_UA_		02
DRAWN	DESIGNED DATE	copied in whole or in part without the prior written approval of Henry & Hymas.								

		UT & FILL R upper vai		COLOUR
-10.0	to	-8.0	m	
-8.0	to	-6.0	m	
-6.0	to	-4.0	m	
-4.0	to	-3.0	m	
-3.0	to	-2.0	m	
-2.0	to	-1.5	m	
-1.5	to	-1.0	m	
-1.0	to	-0.75	m	
-0.75	to	-0.50	m	
-0.50	to	-0.25	m	
-0.25	to	0.0	m	
0.0	to	0.25	m	
0.25	to	0.50	m	
0.50	to	0.75	m	
0.75	to	1.0	m	
1.0	to	1.5	m	
1.5	to	2.0	m	
2.0	to	3.0	m	
3.0	to	4.0	m	
4.0	to	6.0	m	
6.0	to	8.0	m	
8.0	to	10.0	m	

BULK EARTHWORKS QUANTITIES

TOTAL AREA (2,670 m²)					
CUT	10,489	m³			
FILL	55	m³			
EXCESS OF CUT OVER FILL	10,434	m³			
EXCAVATION FOR RETAINING	WALLS NOT INCLUDED IN CALC	ULATION			
EXCAVATION FOR SERVICE T	RENCHES NOT INCLUDED IN CA	LCULATION			
	HAS BEEN CALCULATED AFTER				
	FACE. TOP SOIL STRIPPING DEP	TH 100mm. EXISTING			
TOPSOIL DEPTH TBC ON SITE	•				

PAVEMENT THICKNESS "INCLUDING BEE	DING THICKN	IESS"
DRIVEWAY	250	mm
BUILDING SLAB	250	mm
FOOTPATH AREAS	150	mm
LANDSCAPING AREAS	100	mm

This drawing and design remains the property of Henry & Hymas and may not be copied in whole or in part without the prior written approval of Henry & Hymas. DRAWN DESIGNED DATE

REVISION

AMENDMENT

DRAWN DESIGNED DATE REVISION

AMENDMENT

Appendix C Laboratory Reports

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 268144

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Tristan Goodbody
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	CES190901 Frenchmans Road Randwick
Number of Samples	12 Soil
Date samples received	03/05/2021
Date completed instructions received	03/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 04/05/2021

 Date of Issue
 04/05/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Nyovan Moonean, Panika Wongchanda Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Dragana Tomas, Senior Chemist Ken Nguyen, Senior Customer Service Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	75	72	86	92	73
				<u> </u>	I	
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		268144-6	268144-7	268144-8	268144-9	268144-10
	UNITS	268144-6 BH9	268144-7 BH10	268144-8 BH11	268144-9 TS	268144-10 TB
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH9	BH10	BH11		
Our Reference Your Reference Depth	UNITS	BH9 0.15	BH10 0.15	BH11 0.15	TS -	тв -
Our Reference Your Reference Depth Date Sampled	UNITS -	BH9 0.15 03/05/2021	BH10 0.15 03/05/2021	BH11 0.15 03/05/2021	TS - 03/05/2021	TB - 03/05/2021
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH9 0.15 03/05/2021 Soil	BH10 0.15 03/05/2021 Soil	BH11 0.15 03/05/2021 Soil	TS - 03/05/2021 Soil	TB - 03/05/2021 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021	BH10 0.15 03/05/2021 Soil 03/05/2021	BH11 0.15 03/05/2021 Soil 03/05/2021	TS - 03/05/2021 Soil 03/05/2021	TB - 03/05/2021 Soil 03/05/2021
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021	TS - 03/05/2021 Soil 03/05/2021 04/05/2021	TB - 03/05/2021 Soil 03/05/2021 04/05/2021
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 [NA]	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 [NA]	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 [NA] [NA]	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <25 <0.2	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 [NA] [NA] [NA] [NA] 77%	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 [NA] [NA] [NA] 77% 78%	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 (NA) (NA) (NA) (NA) 77% 78%	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 [NA] [NA] [NA] (NA] 77% 78% 78% 78%	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH9 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	BH10 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	BH11 0.15 03/05/2021 Soil 03/05/2021 04/05/2021 04/05/2021 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	TS - 03/05/2021 Soil 03/05/2021 04/05/2021 (NA) (NA) (NA) (NA) (NA) (NA) (NA) (NA)	TB - 03/05/2021 Soil 03/05/2021 04/05/2021 04/05/2021 225 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		268144-11
Your Reference	UNITS	QS1
Depth		-
Date Sampled		03/05/2021
Type of sample		Soil
Date extracted	-	03/05/2021
Date analysed	-	04/05/2021
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	77

svTRH (C10-C40) in Soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	280	140	270
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	200	180	130
TRH >C10 -C16	mg/kg	<50	<50	53	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	53	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	410	270	370
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	150	130	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	610	400	370
Surrogate o-Terphenyl	%	102	96	106	104	100

svTRH (C10-C40) in Soil					
Our Reference		268144-6	268144-7	268144-8	268144-11
Your Reference	UNITS	BH9	BH10	BH11	QS1
Depth		0.15	0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	980	430	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	1,100	360	120	100
TRH >C10-C16	mg/kg	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	1,900	700	120	110
TRH >C ₃₄ -C ₄₀	mg/kg	370	230	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	2,300	930	120	110
Surrogate o-Terphenyl	%	110	116	94	94

PAHs in Soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	03/05/2021	03/05/2021	04/05/2021	04/05/2021	04/05/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthylene	mg/kg	<0.1	<0.1	0.4	0.1	0.9
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Phenanthrene	mg/kg	0.8	0.1	0.7	0.4	2.7
Anthracene	mg/kg	0.3	<0.1	0.2	0.1	1.4
Fluoranthene	mg/kg	2.0	0.5	2.3	0.8	9.4
Pyrene	mg/kg	2.0	0.6	2.6	1	11
Benzo(a)anthracene	mg/kg	2.0	0.5	1.8	0.6	4.3
Chrysene	mg/kg	1.3	0.5	1.3	0.4	5.8
Benzo(b,j+k)fluoranthene	mg/kg	2	0.8	3.2	1	7.2
Benzo(a)pyrene	mg/kg	1.2	0.4	2.1	0.58	4.6
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.2	1.0	0.3	2.3
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	0.2	<0.1	0.5
Benzo(g,h,i)perylene	mg/kg	0.8	0.3	1.2	0.3	2.3
Total +ve PAH's	mg/kg	13	3.8	17	5.5	53
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.8	0.5	2.9	0.8	6.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.8	0.6	2.9	0.8	6.6
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.8	0.6	2.9	0.9	6.6
Surrogate p-Terphenyl-d14	%	102	105	122	118	120

PAHs in Soil					
Our Reference		268144-6	268144-7	268144-8	268144-11
Your Reference	UNITS	BH9	BH10	BH11	QS1
Depth		0.15	0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	03/05/2021	04/05/2021
Naphthalene	mg/kg	<0.1	0.3	0.4	<0.1
Acenaphthylene	mg/kg	<0.1	1.5	<0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.5	0.4	<0.1
Phenanthrene	mg/kg	0.1	5.2	4.9	0.2
Anthracene	mg/kg	<0.1	1.9	1.8	<0.1
Fluoranthene	mg/kg	0.2	11	12	0.6
Pyrene	mg/kg	0.3	11	13	0.8
Benzo(a)anthracene	mg/kg	0.2	4.0	5.8	0.6
Chrysene	mg/kg	<0.1	5.8	6.3	0.5
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	7.4	8.9	1
Benzo(a)pyrene	mg/kg	0.1	4.6	5.9	0.65
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	2.1	2.9	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.5	0.6	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	2.3	3.5	0.4
Total +ve PAH's	mg/kg	0.96	58	66	5.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	6.5	8.4	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	6.5	8.4	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	6.5	8.4	1
Surrogate p-Terphenyl-d14	%	122	116	109	118

Organochlorine Pesticides in soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	03/05/2021	03/05/2021	04/05/2021	04/05/2021	04/05/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	83	87	91	91

Organochlorine Pesticides in soil					
Our Reference		268144-6	268144-7	268144-8	268144-11
Your Reference	UNITS	BH9	BH10	BH11	QS1
Depth		0.15	0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	03/05/2021	04/05/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	440	1.0	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	13	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	90	88	90

Organophosphorus Pesticides in Soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	03/05/2021	03/05/2021	04/05/2021	04/05/2021	04/05/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	83	87	91	91

Organophosphorus Pesticides in Soil					
Our Reference		268144-6	268144-7	268144-8	268144-11
Your Reference	UNITS	BH9	BH10	BH11	QS1
Depth		0.15	0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	03/05/2021	04/05/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	90	88	90

PCBs in Soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	03/05/2021	03/05/2021	04/05/2021	04/05/2021	04/05/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	83	87	91	91

PCBs in Soil					
Our Reference		268144-6	268144-7	268144-8	268144-11
Your Reference	UNITS	BH9	BH10	BH11	QS1
Depth		0.15	0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	03/05/2021	04/05/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	90	88	90

Acid Extractable metals in soil						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	11	11	9	12
Copper	mg/kg	61	31	34	29	54
Lead	mg/kg	1,300	250	360	110	2,200
Mercury	mg/kg	0.2	1.0	0.2	0.1	0.7
Nickel	mg/kg	3	4	7	5	6
Zinc	mg/kg	210	120	110	100	430

Acid Extractable metals in soil					
Our Reference		268144-6	268144-7	268144-8	268144-11
Your Reference	UNITS	BH9	BH10	BH11	QS1
Depth		0.15	0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021
Arsenic	mg/kg	<4	<4	12	<4
Cadmium	mg/kg	<0.4	<0.4	0.8	<0.4
Chromium	mg/kg	6	8	19	10
Copper	mg/kg	48	52	140	32
Lead	mg/kg	180	330	2,100	270
Mercury	mg/kg	0.2	0.2	0.7	1.1
Nickel	mg/kg	2	3	11	4
Zinc	mg/kg	61	150	670	130

Moisture						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
Moisture	%	16	12	9.9	10	17
Moisture						
Our Reference		268144-6	268144-7	268144-8	268144-11	
Your Reference	UNITS	BH9	BH10	BH11	QS1	
Depth		0.15	0.15	0.15	-	
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	03/05/2021	03/05/2021	03/05/2021	03/05/2021	
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	
Moisture	%	16	12	17	13	

Asbestos ID - soils NEPM - ASB-001						
Our Reference		268144-1	268144-2	268144-3	268144-4	268144-5
Your Reference	UNITS	BH4	BH5	BH6	BH7	BH8
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	04/05/2021	04/05/2021	04/05/2021	04/05/2021	04/05/2021
Sample mass tested	g	461.05	473.08	367.67	387.19	299.69
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & debris	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	-	-	_
FA and AF Estimation*	g	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001				
Our Reference		268144-7	268144-8	268144-11
Your Reference	UNITS	BH10	BH11	QS1
Depth		0.15	0.15	-
Date Sampled		03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	04/05/2021	04/05/2021	04/05/2021
Sample mass tested	g	533.74	476.82	385.11
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_	-
FA and AF Estimation*	g	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Asbestos ID - soils		
Our Reference		268144-6
Your Reference	UNITS	BH9
Depth		0.15
Date Sampled		03/05/2021
Type of sample		Soil
Date analysed	-	04/05/2021
Sample mass tested	g	Approx. 45g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	268144-2
Date extracted	-			03/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021
Date analysed	-			04/05/2021	1	04/05/2021	04/05/2021		04/05/2021	04/05/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	120	109
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	120	109
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	120	108
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	121	110
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	118	111
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	120	109
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	114	104
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	77	1	75	72	4	85	80

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	268144-2
Date extracted	-			03/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021
Date analysed	-			04/05/2021	1	04/05/2021	04/05/2021		04/05/2021	04/05/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	113	103
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	86	86
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	108	79
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	113	103
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	110	10	86	86
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	108	79
Surrogate o-Terphenyl	%		Org-020	99	1	102	97	5	119	96

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	268144-2	
Date extracted	-			03/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021	
Date analysed	-			04/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	83	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	70	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	79	70	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	0.7	13	113	83	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.3	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	2.0	2.2	10	100	75	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	2.0	2.3	14	104	74	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	2.0	2.2	10	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	1.3	1.6	21	86	#	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	2	2.4	18	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	1.2	1.3	8	103	#	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.5	0.7	33	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	1	22	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	122	1	102	107	5	126	110	

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil	Duplicate					Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	268144-2				
Date extracted	-			03/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021				
Date analysed	-			04/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021				
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	77				
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	72				
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	79				
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	117	81				
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	86				
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	85				
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	121	95				
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	88				
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	88				
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	80				
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]				
Surrogate TCMX	%		Org-022/025	101	1	84	84	0	87	81				

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Spike Re	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	268144-2
Date extracted	-			03/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021
Date analysed	-			04/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	76
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	81
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	73	117
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	108
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	83
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	96
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	95
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	101	1	84	84	0	87	81

QUALIT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	268144-2
Date extracted	-			03/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021
Date analysed	-			04/05/2021	1	03/05/2021	03/05/2021		03/05/2021	03/05/2021
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	120	80
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	101	1	84	84	0	87	81

QUALITY CONT	ROL: Acid E	xtractabl		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	268144-2
Date prepared	-			04/05/2021	1	04/05/2021	04/05/2021		04/05/2021	04/05/2021
Date analysed	-			04/05/2021	1	04/05/2021	04/05/2021		04/05/2021	04/05/2021
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	103	103
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	102	96
Chromium	mg/kg	1	Metals-020	<1	1	9	8	12	108	106
Copper	mg/kg	1	Metals-020	<1	1	61	48	24	103	106
Lead	mg/kg	1	Metals-020	<1	1	1300	1300	0	102	97
Mercury	mg/kg	0.1	Metals-021	<0.1	1	0.2	0.2	0	111	#
Nickel	mg/kg	1	Metals-020	<1	1	3	2	40	103	100
Zinc	mg/kg	1	Metals-020	<1	1	210	200	5	104	97

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 268144-6 was sub-sampled from a jar provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 268144-1-3,5,11 are below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 268144-2 have caused interference.

8 metals in soil - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

ENVIROLAB

. . .

CHAIN OF CUSTODY - Client

Fines Characterisation

Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, N5W 2067 Ph 02 9910 6200 / sydney@envirolab.com.au

Perth Lab - MPL Laboratories 16-18 Havden Crt Mvaree, WA 6154

ENVIROLAB GROUP - National phone number 1300 42 43 44

															16-18 Hayden Crt Myaree, WA 6154					
Client: Cons	ulting Earth Scientists		<u>_</u>	· · · · · · · · · · · · · · · · · · ·	Client	: Proje	ct Nam	e / Nu	mber /	Site	etc (ie	report	ti tle):				317 2505			
Contact Pers	son: Andrew Carars		·				CES190	901 Fi	renchn	oans R	toad Ra	andwic	k			Anthou	ma lah	Emulas	lah ƙan	less
Project Mgr:	: Andrew Carras						<u>Melbourne Lab</u> - Envirolab Services 1A Dalmore Drive Scoresby VIC 3179													
Sampler: An	ndrew Carras						uote No								5	Ph 03 9763 2500 / melbourne@envirolab.com.au			envirolab.com.au	
Address: Lev	vel 1 Suite 3, 55-65 Grandv	view Street	, Pymble NS	5W	Date	results	requir	ed:			1-	day			F	rishan	• Office	- Fowlro	lah Seru	hres
					Or ch	oose:	standa	rd / sa	me da	y/1c	iay / 2	day / S	3 day		<u>Brishane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014					
	• •							dvance	if urgei	nt turni	around	is requii	ed -		F	Ph Q7 32	266 9532	t / brist	bane@e	nvirolab.com.au
Phone:		Mob: 0497 018 918				<i>itges at</i> t form	at: esd	at / eo	uls /							delaid	e Office	- Enviro	iab Serv	ices
						omme											Parade, I			
	tristan.goodbodv@cons															'n 0406	350 706	ader	эпсфе	nvirolab.com.au
	· · ·																			
	·				· ·															
											•									
				• •	-															
	Sample	informatio	n		2122	<u>.</u>		<u></u>		10	Tes	ts Requ	ired			- ` · • ;			1. 1. 1.	Comments
		· ·			500mL Sb															
				· ·	ନ୍ଦ୍ର କ୍ଷ	ĽЩ.					}							[Provide as much
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sampl		/TRH/BTEX	1		•								·			information about the
Southie TD			Bampien		Combo 6A NEPM	Ē														sample as you can
					Į															
Ĩ (6+++10-15		3521	56.1	X	· · ·													1	· · ·
2	345 1015		<u>┥[╤]╺┦[╤]╶┦┈╼</u>	,		1							6			12 45	scy St	-	1	
3	DH6 10:15		1				•					E	WIRD	Ch	atswor		20 0.6200			
4	BH7 10.05	┢╸╄━┄			X	<u> </u>												<u> </u>		NO SCENE NERM
5	GH8 10.15													9:26	8-14	74			-	please value for
6.	BH9 10.15	1 1 0											Date R	eceive	1: 03/	051	<u>হ</u> ा			
7	BH10/015	╎┽┈	<u> </u>		TŶ						† —		Time F	eçeive	\$: { S	22-		1	1	<u> </u>
8	"BHII / 0:15				一文					_			Receiv	et By:	(i-f		1			<u> </u>
<u>- ĝ -</u>	TS		┼╸┼╼	 }		X							Temp:		nDiefili Ionact			—	1	· · · ·
- lo	TB		╉━╁─			X				_				y: Uit2			4	_		····
<u> </u>	QS1	+	┨──┤──	1 <u>1</u>	-	<u> </u>					-		06000	J. 111.22		1- C	1		1	
· · · · · ·	QSIA	<u>⊢,∖</u> −	1.1	<u>⊢ _√</u>	TÂ	[· ·		_			<u> · - </u>			<u>† </u>	Send CESLA +
12	1144105 CH		<u> </u>		- 1						l						+	1	t	ALS please
	d by (Company):	Consulting	g Earth Scie	entists	Receiv	ved bv	(Comp	anv):	E(2.9	10				I ah u	se oni	v.			z odvist
Print Name:		Fer Co	FRRAN								1.				-		•	\mathbf{G}	hr Ami	signt (gingle and)
Date & Time		21				Print Name: (hristing Date & Time: 17 2 US 25 0 3/05/2								~ ~	_	_ (if applicable)				
Signature:		/	_		Signal		- 73	· · · ·			/								_	(ii applicative) d / courier
	- Chain of Custody, Client Jee	10010010				-			M	ito -	Lah o	opy / E	duo -							

...

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

Page No: - Lad copy / Blue - Client copy / Pink - Retain in Book wnite

COMPO

4

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 268144-A

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Andrew Carras
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	CES190901 Frenchmans Road Randwick
Number of Samples	12 Soil
Date samples received	03/05/2021
Date completed instructions received	05/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	06/05/2021						
Date of Issue	07/05/2021						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Hannah Nguyen, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 268144-A Revision No: R00

Page | 1 of 16

CEC		
Our Reference		268144-A-3
Your Reference	UNITS	BH6
Depth		0.15
Date Sampled		03/05/2021
Type of sample		Soil
Date prepared	-	05/05/2021
Date analysed	-	06/05/2021
Exchangeable Ca	meq/100g	5.4
Exchangeable K	meq/100g	0.1
Exchangeable Mg	meq/100g	1.4
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	6.9

Misc Inorg - Soil		
Our Reference		268144-A-3
Your Reference	UNITS	BH6
Depth		0.15
Date Sampled		03/05/2021
Type of sample		Soil
Date prepared	-	06/05/2021
Date analysed	-	06/05/2021
Total Organic Carbon (Walkley Black)	mg/kg	39,000
pH 1:5 soil:CaCl ₂	pH Units	5.1

Clay 50-120g		
Our Reference		268144-A-3
Your Reference	UNITS	BH6
Depth		0.15
Date Sampled		03/05/2021
Type of sample		Soil
Date prepared	-	05/05/2021
Date analysed	-	06/05/2021
Clay in soils <2µm	% (w/w)	11

Acid Extractable metals in soil		
Our Reference		268144-A-3
Your Reference	UNITS	BH6
Depth		0.15
Date Sampled		03/05/2021
Type of sample		Soil
Date prepared	-	05/05/2021
Date analysed	-	06/05/2021
Iron	mg/kg	9,400

TCLP Preparation - Acid						
Our Reference		268144-A-1	268144-A-3	268144-A-5	268144-A-7	268144-A-8
Your Reference	UNITS	BH4	BH6	BH8	BH10	BH11
Depth		0.15	0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	7.0	7.0	7.8	8.3	7.9
pH of soil TCLP (after HCl)	pH units	1.7	1.7	1.7	1.7	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	4.9	4.9	4.9	4.9	4.9

PAHs in TCLP (USEPA 1311)				
Our Reference		268144-A-5	268144-A-7	268144-A-8
Your Reference	UNITS	BH8	BH10	BH11
Depth		0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	06/05/2021	06/05/2021	06/05/2021
Date analysed	-	06/05/2021	06/05/2021	06/05/2021
Naphthalene in TCLP	mg/L	<0.001	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	129	117	125

Metals in TCLP USEPA1311					
Our Reference		268144-A-1	268144-A-3	268144-A-5	268144-A-8
Your Reference	UNITS	BH4	BH6	BH8	BH11
Depth		0.15	0.15	0.15	0.15
Date Sampled		03/05/2021	03/05/2021	03/05/2021	03/05/2021
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	06/05/2021	06/05/2021	06/05/2021	06/05/2021
Date analysed	-	06/05/2021	06/05/2021	06/05/2021	06/05/2021
Lead in TCLP	mg/L	6.9	0.1	4.1	7.7

Method ID	Methodology Summary
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Inorg-036	Total Organic Carbon or Matter - A titrimetric method that measures the oxidisable organic content of soils.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QU/	QUALITY CONTROL: CEC					Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date prepared	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	
Date analysed	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	107	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	109	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	102	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	104	

QUALITY CONTROL: Misc Inorg - Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	
Date analysed	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	
Total Organic Carbon (Walkley Black)	mg/kg	1000	Inorg-036	<1000	[NT]		[NT]	[NT]	97	
pH 1:5 soil:CaCl ₂	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CONTROL: Acid Extractable metals in soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	[NT]
Date prepared	-			05/05/2021	[NT]		[NT]	[NT]	05/05/2021	[NT]
Date analysed	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	[NT]
Iron	mg/kg	10	Metals-020	<10	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CON	QUALITY CONTROL: PAHs in TCLP (USEPA 1311)								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021		
Date analysed	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021		
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	81		
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	68		
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	73		
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	88		
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	78		
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	84		
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	86		
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	73		
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	127	[NT]		[NT]	[NT]	119		

QUALITY CON	QUALITY CONTROL: Metals in TCLP USEPA1311					Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	268144-A-5
Date extracted	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	06/05/2021
Date analysed	-			06/05/2021	[NT]		[NT]	[NT]	06/05/2021	06/05/2021
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	96	91

Result Definitions							
NT	NT Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

-								ï	
ling To			;					:	•
:			-					······	: -
rom:			Aileen Hie	E May 2021	10-27 ANA				
ent:			-	5 May 2021	10:37 AIVI			:	
D:			Ming To	for Popistrati	on 268144 CE	5100001 Er	enchmans Bo	: ad Bandwick	
ubject:			rvv. Results	ior registrati	011208144 CL	.515050111	enermans re		•
			•					1	
:			;						
:							Palint	Cutor A	,
	A .		· · · · · · · · · · · ·		· . • · • · •	· • •	707	81444A. Xanj 610512001	
	•			tingearth.com	m.au>		H) (* (0	an	:
	nesday, 5 M						the 200	510512021	<u>.</u>
-	, –				ilbox <sydne< td=""><td>y@envirola</td><td>b.com.au></td><td>M</td><td>() </td></sydne<>	y@envirola	b.com.au>	M	()
	•			sultingearth.			1.	-	
ibject: RE	: Results for	r Registratio	n 268144 C	ES190901 Fre	enchmans Ro	ad Kandwic	к		•
			:					:	
		Same & C.	محمد الشكرية والم		Do	incharacter's	··· با مثل علم (ام		onto'
					. Do not act or	Instructions	s, click links or	open attachm	ents
ness you r	ecognise the	sender and k	now the con	tent is authen:	tic and sale.			I	:
, <u>.</u>			-		\bigcirc				
•					G				
	hed in the er	nail below -	Could I plea	ase get samp	le BH6/0.15 a	inalysed for	soil EIL parai	meters on a :	1-day
\T?								-	
ould I also	o get the fol	lowing samp	oles analyse	d for TCLP B(a)P and Lead	on a one-da	ay IAI:	1	
		(3)	<u></u>	<u> </u>		1			
	BH4/0.15	BH6/0.15	BH8/0.15	BH10/0.15	BH11/0.15				
B(a)P	-	-	Yes	Yes	Yes				
_ead	Yes	Yes	Yes	-	Yes				
			·····		L	1			
nd Rega	rds.								
	,		1						
ndrew C	arras		:						
nvironme	ntal Geologi	st	;						
									•
🚮 📐 CO	NSULTING								
	атн			1				1	
SC 🛠	ENTISTS		;						•
ww.cons	ultingearth	.com.au	:						
neulting F	arth Scientists	Pty I td							
ite 3, Level			:						
i, Grandviev (mble, NSW									
el: +61 2 856	9 2200 Fax: +6			918					
Mail: <u>andre</u>	w.carras@cons	sultingearth.co	m.au						
3N 67 151 5	24 7 57								
				Confidentia	ality Notice				
This email, in	ncluding any attac	hments, is intend	ed for the use of t	he addressee and is	confidential. If yo	u are not the add	ressee it may be un	l awful for you to n	ead, copy
distribute, di	sclose or otherwis	se use the informa			email. If you are no return email. Than		nease delete this en	and any attachr	nents and
				Virus Di	sclaimer	•	and ampails cont to	uc alactronically ar	جه ريايت ه
Ve therefore r	ecommend that fi	les sent by CES a	re checked prior	to use on the recei	we cannot guaran iving system, CES v	will make every e	effort to ensure that	we do not re-transr	mit infect
software bu	t we are not liable	e for any loss or d	lamage which ma	y occur as a result (of electronically tra	nsmitted material	l, nor for any distor	tion or changes ma	ide to the
formation cor	named in the train	event of any disc	reparcy between	ng receipt by the ad paper and electron	dressee. At the disc ic versions the pap	er version will t	e may senti a paper ake precedence.	copy for continue	auon. In
					· · · · ·		-		
				1	L				
								-	

:

.

-

į

;

:

; ;

1	1			
Ming To	-			
	·		:	-
From:	Ken Nguyen			:
Sent:	Tuesday, 4 May 20.	21 8:05 PM	• :	
To:	Ming To 3		•	
Cc:	Simon Song; Aileer	n Hie		
subject:		gistration 268144 CES190901 Fre	nchmans Road Randwick	
Subject.				• ·
Follow Up Flag:	Follow up	Pa	f: 268144-Af. FT: 1 day Ne: 06/05/2021 M7	
Flag Status:	Flagged ¹			
Flay Status.	riaggeu		pi caay	
		Ď	ve: 06/05/2021	:
			MT	
	•	. •	-	
4		a an an an an an an		
From: Andrew Carras <and< td=""><td>drew.carras@consultingea</td><td>rth.com.au></td><td></td><td></td></and<>	drew.carras@consultingea	rth.com.au>		
Sent: Tuesday, 4 May 202:	1 8:03 PM			7
To: Ken Nguyen <knguyer< td=""><td>@envirolab.com.au></td><td></td><td></td><td></td></knguyer<>	@envirolab.com.au>			
	stan.goodbody@consulting	zearth.com.au>		
		901 Frenchmans Road Randwick		
······································		• • • • • • • • • • • • • • • • • • • •		
-			:	
CAUTION: This email original	ted from outside of the organ	nisation. Do not act on instructions,	click links or open attachm	ents
	der and know the content is a		circk marks of open attacing	icites
,	del and know the content is		-	
: ():				
Hi,	<u>َ</u>			
	(3)			
Could I please get sample	BH6/0.15 analysed for soll	EIL parameters on a 1-day TAT?		
Kind Regards,	:			
			1	
Andrew Carras				
Environmental Geologist				
CONSULTING				
SCIENTISTS				
	m.au .			
www.consultingearth.co				
www.consultingearth.co				
www.consultingearth.co	Ltd			
Consulting Earth Scientists Pty I Suite 3, Level 1	Ltd :			
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073				
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9	9983 0582 M: +61 497 018 918		- 	
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073	9983 0582 M: +61 497 018 918		:	
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9	9983 0582 M: +61 497 018 918		•	
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u>	9983 0582 M: +61 497 018 918 ngearth.com.au	onfidentiality Notice	- :	
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen	2983 0582 M: +61 497 018 918 ngearth.com.au Co nts, is intended for the use of the address the information contained in or attache Inform us immer	onfidentiality Notice see and is confidential. If you are not the addressed to this email. If you are not the addressee plea diately by return email. Thank you.	see it may be uniawful for you to use delete this email and any attach	read, co ments a
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use	2983 0582 M: +61 497 018 918 ngearth.com.au ts, is intended for the use of the address the information contained in or attache Inform us imme a virus-free computing environment. F ent by CES are checked prior to use on	see and is confidential. If you are not the addressed to this email. If you are not the addressee pleadiately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effi-	ise delete this email and any attach d etnails sent to us electronically at rt to ensure that we do not re-trans	ments a re virus mit info
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss	2983 0682 M: +61 497 018 918 ngearth.com.au Conts, is intended for the use of the address the information contained in or attache Inform us immer a virus-free computing environment. Hent by CES are checked prior to use on any loss or damage which may occur as ion during transfer or following receipt	see and is confidential. If you are not the address ed to this email. If you are not the addressee plea diately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effort a result of electronically transmitted material, a by the addressee. At the discretion of CES we re	ise delete this email and any attach d ethails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss	2983 0682 M: +61 497 018 918 ngearth.com.au Conts, is intended for the use of the address the information contained in or attache Inform us immer a virus-free computing environment. Hent by CES are checked prior to use on any loss or damage which may occur as ion during transfer or following receipt	see and is confidential. If you are not the addressed to this email. If you are not the addressee pleadiately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effic s a result of electronically transmitted material, a	ise delete this email and any attach d ethails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss even	2983 0582 M: +61 497 018 918 Ingearth.com.au Conts, is intended for the use of the address the information contained in or attacke Inform us immed a virus-free computing environment. F ent by CES are checked prior to use on any loss or damage which may occur as sion during transfer or following receipt at of any discrepancy between paper and	see and is confidential. If you are not the address ed to this email. If you are not the addressee plea diately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effort a result of electronically transmitted material, a by the addressee. At the discretion of CES we re	ise delete this email and any attach d ethails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss	2983 0582 M: +61 497 018 918 Ingearth.com.au Conts, is intended for the use of the address the information contained in or attacke Inform us immed a virus-free computing environment. F ent by CES are checked prior to use on any loss or damage which may occur as sion during transfer or following receipt at of any discrepancy between paper and	see and is confidential. If you are not the address ed to this email. If you are not the addressee plea diately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effort a result of electronically transmitted material, a by the addressee. At the discretion of CES we re	ise delete this email and any attach d ethails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultin</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss even	2983 0682 M: +61 497 018 918 ingearth.com.au Conts, is intended for the use of the address the information contained in or attache Inform us immer a virus-free computing environment. F ent by CES are checked prior to use on any loss or damage which may occur as ion during transfer or following receipt at of any discrepancy between paper and <u>ven@envirolab.com.au</u> >	see and is confidential. If you are not the address ed to this email. If you are not the addressee plea diately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effort a result of electronically transmitted material, a by the addressee. At the discretion of CES we re	ise delete this email and any attach d ethails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultiv</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss even From: Ken Nguyen < <u>KNgu</u> Sent: Tuesday, 4 May 202	2983 0682 M: +61 497 018 918 ingearth.com.au Co ts, is intended for the use of the address the information contained in or attache Inform us immed a virus-free computing environment. F ent by CES are checked prior to use on any loss or damage which may occur as sion during transfer or following receipt at of any discrepancy between paper and <u>ven@envirolab.com.au</u> > 1 7:23 PM	see and is confidential. If you are not the address ed to this email. If you are not the addressee plea diately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products an the receiving system. CES will make every effi s a result of electronically transmitted material, a by the addressee. At the discretion of CES we r d electronic versions the paper version will tak	ise delete this email and any attach d ethails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t
Consulting Earth Scientists Pty I Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9 E-Mail: <u>andrew.carras@consultiv</u> ABN 67 151 524 757 This email, including any attachmen distribute, disclose or otherwise use CES has systems in place to maintain We therefore recommend that files se software but we are not liable for information contained in the transmiss even From: Ken Nguyen < <u>KNgu</u> Sent: Tuesday, 4 May 202	2983 0682 M: +61 497 018 918 ingearth.com.au Co ts, is intended for the use of the address the information contained in or attache Inform us immed a virus-free computing environment. F ent by CES are checked prior to use on any loss or damage which may occur as sion during transfer or following receipt at of any discrepancy between paper and <u>ven@envirolab.com.au</u> > 1 7:23 PM	see and is confidential. If you are not the address ed to this email. If you are not the addressee plea diately by return email. Thank you, Virus Disclaimer However, we cannot guarantee that products are the receiving system. CES will make every effort a result of electronically transmitted material, a by the addressee. At the discretion of CES we re	se delete this email and any attach d etnails sent to us electronically ar ort to ensure that we do not re-trans for for any distortion or changes ma nay send a paper copy for confirm	ments a re virus mit infi ade to t

CERTIFICATE OF ANALYSIS

Work Order	: ES2116624	Page	: 1 of 8
Client	: CONSULTING EARTH SCIENTISTS	Laboratory	: Environmental Division Sydney
Contact	: ANDREW CARRAS	Contact	: Customer Services ES
Address	Suite 3, Level 1 55-65 Grandview Street PYMBLE NSW, AUSTRALIA 2073	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: CES190901 Frenchmans Road Randwick	Date Samples Received	: 04-May-2021 17:10
Order number	:	Date Analysis Commenced	06-May-2021
C-O-C number	:	Issue Date	11-May-2021 17:25
Sampler	:		IC-MRA NATA
Site	:		
Quote number	: EN/333		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alana Smylie	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG005: Poor precision was obtained for Iron on sample ES2116556-1 and ES2116624-1 Results have been confirmed by re-extraction and reanalysis.
- EG035: Positive Hg result ES2116624 #1 has been confirmed by reanalysis.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS1A	 	
		Sampli	ng date / time	03-May-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2116624-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 10)5-110°C)					
Moisture Content		1.0	%	15.6	 	
EA200: AS 4964 - 2004 Identification	of Asbestos in Soils	;				
Asbestos Detected	1332-21-4	0.1	g/kg	No	 	
Asbestos (Trace)	1332-21-4	5	Fibres	No	 	
Asbestos Type	1332-21-4	-		-	 	
Synthetic Mineral Fibre		0.1	g/kg	No	 	
Organic Fibre		0.1	g/kg	No	 	
Sample weight (dry)		0.01	g	497	 	
APPROVED IDENTIFIER:		-		A. SMYLIE	 	
EG005(ED093)T: Total Metals by ICP	-AES					
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	8	 	
Copper	7440-50-8	5	mg/kg	31	 	
Lead	7439-92-1	5	mg/kg	293	 	
Nickel	7440-02-0	2	mg/kg	3	 	
Zinc	7440-66-6	5	mg/kg	121	 	
EG035T: Total Recoverable Mercury	by FIMS					
Mercury	7439-97-6	0.1	mg/kg	1.0	 	
EP066: Polychlorinated Biphenyls (P	CB)					
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticides	(OC)					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS1A	 	
, , , , , , , , , , , , , , , , , , ,		Sampli	ng date / time	03-May-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2116624-001	 	
				Result	 	
EP068A: Organochlorine Pestici	ides (OC) - Continued					
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP068B: Organophosphorus Pe	sticides (OP)					
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)B: Polynuclear Arom						

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS1A	 	
		Samplii	ng date / time	03-May-2021 00:00	 	
Compound	CAS Number	LOR	Unit	ES2116624-001	 	
	on to Manibor			Result	 	
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued				
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	0.6	 	
Pyrene	129-00-0	0.5	mg/kg	0.7	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	0.6	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	2.4	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
[^] Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydroca	irbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ıs			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1) >C10 - C16 Fraction		50	mg/kg	<50	 	
>C10 - C10 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
		50	шулку	NO	 	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QS1A	 		
	Sampling date / time			03-May-2021 00:00	 		
Compound	CAS Number	LOR	Unit	ES2116624-001	 		
				Result	 		
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns - Continued				
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	 		
(F2)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	 		
Toluene	108-88-3	0.5	mg/kg	<0.5	 		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 		
^ Sum of BTEX		0.2	mg/kg	<0.2	 		
^ Total Xylenes		0.5	mg/kg	<0.5	 		
Naphthalene	91-20-3	1	mg/kg	<1	 		
EP066S: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1	%	86.4	 		
EP068S: Organochlorine Pesticide St	urrogate						
Dibromo-DDE	21655-73-2	0.05	%	100.0	 		
EP068T: Organophosphorus Pesticid	le Surrogate						
DEF	78-48-8	0.05	%	128	 		
EP075(SIM)S: Phenolic Compound St						1	
Phenol-d6	13127-88-3	0.5	%	81.4	 		
2-Chlorophenol-D4	93951-73-6	0.5	%	84.8	 		
2.4.6-Tribromophenol	118-79-6	0.5	%	69.2	 		
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	98.0	 		
Anthracene-d10	1719-06-8	0.5	%	110	 		
4-Terphenyl-d14	1718-51-0	0.5	%	94.5	 		
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	104	 		
Toluene-D8	2037-26-5	0.2	%	98.6	 		
4-Bromofluorobenzene	460-00-4	0.2	%	105	 		

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils	
EA200: Description	QS1A - 03-May-2021 00:00	Mid brown soil.

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	y Limits (%)	
Compound	CAS Number	Low	High	
EP066S: PCB Surrogate				
Decachlorobiphenyl	2051-24-3	39	149	
EP068S: Organochlorine Pesticide Surrogate				
Dibromo-DDE	21655-73-2	49	147	
EP068T: Organophosphorus Pesticide Surrog	ate			
DEF	78-48-8	35	143	
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	13127-88-3	63	123	
2-Chlorophenol-D4	93951-73-6	66	122	
2.4.6-Tribromophenol	118-79-6	40	138	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	70	122	
Anthracene-d10	1719-06-8	66	128	
4-Terphenyl-d14	1718-51-0	65	129	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	73	133	
Toluene-D8	2037-26-5	74	132	
4-Bromofluorobenzene	460-00-4	72	130	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

QUALITY CONTROL REPORT

Work Order	: ES2116624	Page	: 1 of 10
Client	CONSULTING EARTH SCIENTISTS	Laboratory	: Environmental Division Sydney
Contact	: ANDREW CARRAS	Contact	: Customer Services ES
Address	Suite 3, Level 1 55-65 Grandview Street PYMBLE NSW, AUSTRALIA 2073	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	· · · · · · · · · · · · · · · · · · ·	Telephone	: +61-2-8784 8555
Project	: CES190901 Frenchmans Road Randwick	Date Samples Received	: 04-May-2021
Order number	:	Date Analysis Commenced	: 06-May-2021
C-O-C number	:	Issue Date	11-May-2021
Sampler	:		III-May-2021
Site	:		
Quote number	: EN/333		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alana Smylie	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%
EG005(ED093)T: Tot	tal Metals by ICP-AES	6 (QC Lot: 3669104)							
ES2116624-001	QS1A	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	8	11	35.1	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	3	3	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	31	27	15.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	293	258	12.7	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	121	103	16.0	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-1 [,]	10°C) (QC Lot: 3669106)							
ES2115906-003	Anonymous	EA055: Moisture Content		0.1	%	52.0	53.4	2.7	0% - 20%
ES2117049-001	Anonymous	EA055: Moisture Content		0.1	%	13.8	13.9	0.0	0% - 50%
EG035T: Total Reco	overable Mercury by I	FIMS (QC Lot: 3669103)							
ES2116556-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP066: Polychlorina	ted Biphenyls (PCB)	(QC Lot: 3662106)							
ES2116744-002	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 3662105)							
ES2116744-002	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page	: 3 of 10
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP068A: Organochlo	orine Pesticides (OC	C) (QC Lot: 3662105) - continued							
ES2116744-002	Anonymous	EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	sphorus Pesticides	s (OP) (QC Lot: 3662105)							
ES2116744-002	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	< 0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hy	drocarbons (QC Lot: 3662104)							
ES2116744-002	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
P075(SIM)B: Poly	nuclear Aromatic Hyd	rocarbons (QC Lot: 3662104) - continued							
ES2116744-002	Anonymous	EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
P080/071: Total F	Petroleum Hydrocarbor	ns (QC Lot: 3662103)							
S2116744-002	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
EP071: C29 - C36 Fraction 100 mg/kg 130 EP071: C10 - C14 Fraction 50 mg/kg <50	EP071: C29 - C36 Fraction		100	mg/kg	130	130	0.0	No Limit	
	<50	<50	0.0	No Limit					
P080/071: Total P	Petroleum Hvdrocarbor	ns (QC Lot: 3664140)							
S2116643-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2116381-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
P080/071: Total F	Recoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 3662103)							
ES2116744-002	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	150	150	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	160	170	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
P080/071: Total F	Recoverable Hydrocarb	oons - NEPM 2013 Fractions (QC Lot: 3664140)			5.5				
ES2116643-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2116381-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.0	No Limit
EP080: BTEXN (Q			00_010	10	ing/ig	10	10	0.0	
S2116643-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
_021100+0-001	Anonymous	EP080: Belizene EP080: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toldene EP080: Ethylbenzene	100-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP000. meta- & para-Aylene	106-42-3	0.0	ilig/kg	-0.0	10.0	0.0	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
S2116381-001	Anonymous	EP080: Naphnalene EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
	Allonymous	EP080: Benzene EP080: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
			100-00-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	iiig/kg	~ 0.0	~0.0	0.0	

Page	5 of 10
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

Sub-Matrix: SOIL						Laboratory D	Duplicate (DUP) Report		
Laboratory sample ID	BTEXN (QC Lot: 3664140) - continued	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC L	ot: 3664140) - continued								
ES2116381-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EG005(ED093)T: Total Metals by ICP-AES(QCI	Lot: 3669104)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	93.8	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	100	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	93.6	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	102	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	93.4	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	92.6	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	91.1	66.0	133
G035T: Total Recoverable Mercury by FIMS((QCLot: 3669103)							
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.073 mg/kg	112	70.0	130
P066: Polychlorinated Biphenyls (PCB) (QCL	ot: 3662106)							
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	106	62.0	126
EP068A: Organochlorine Pesticides (OC) (QCL	ot: 3662105)							
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	92.5	69.0	113
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	65.0	117
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	89.5	67.0	119
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	92.3	68.0	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.2	65.0	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.8	67.0	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.3	69.0	115
P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	76.4	62.0	118
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	75.2	63.0	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.2	66.0	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	78.5	64.0	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	86.4	66.0	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	84.8	67.0	115
P068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.5	67.0	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	90.4	69.0	115
P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.4	69.0	12
P068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	95.8	56.0	120
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.3	62.0	124
P068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	83.4	66.0	120
P068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	75.6	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	75.8	54.0	130

Page	: 7 of 10
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP) (QCL	ot: 3662105) - continue	d						
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	106	59.0	119
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.3	62.0	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	87.1	54.0	126
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	95.2	67.0	119
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	70.0	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	78.2	72.0	120
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	78.8	68.0	120
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	86.8	68.0	122
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	81.3	69.0	117
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	80.9	76.0	118
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	80.1	64.0	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	70.0	116
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	102	69.0	121
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	78.6	66.0	118
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	86.4	68.0	124
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	81.8	62.0	112
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	79.9	68.0	120
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	81.4	65.0	127
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	78.7	41.0	123
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 3662104)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	110	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	109	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	106	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	107	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	111	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	114	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	111	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	111	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	92.3	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	96.3	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	82.5	68.0	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	106	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	94.8	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	86.5	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	85.8	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	83.0	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot:	3662103)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	101	75.0	129

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 366210	03) - continued							
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	99.5	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	102	71.0	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 366414	40)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	104	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 3662103)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	100	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	99.4	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	118	63.0	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 3664140)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	106	68.4	128
EP080: BTEXN (QCLot: 3664140)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	103	62.0	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	105	67.0	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	106	65.0	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	108	66.0	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	111	68.0	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	99.8	63.0	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3669104)						
ES2116624-001	QS1A	EG005T: Arsenic	7440-38-2	50 mg/kg	96.7	70.0	130
	EG005T: Cadmium	7440-43-9	50 mg/kg	97.5	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	99.4	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	97.8	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	97.8	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	97.5	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	96.5	66.0	133
G035T: Total Re	coverable Mercury by FIMS (QCLot: 3669103)						
ES2116556-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	94.0	70.0	130
P066: Polychlori	nated Biphenyls (PCB) (QCLot: 3662106)						

Page	: 9 of 10
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

ub-Matrix: SOIL				M	atrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)	
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
P066: Polychlor	inated Biphenyls (PCB) (QCLot: 3662106) - contin	ued						
ES2116744-002	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	111	70.0	130	
EP068A: Organoc	chlorine Pesticides (OC) (QCLot: 3662105)							
ES2116744-002	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	108	70.0	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	90.1	70.0	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	107	70.0	130	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	114	70.0	130	
		EP068: Endrin	72-20-8	2 mg/kg	102	70.0	130	
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	85.5	70.0	130	
EP068B: Organor	phosphorus Pesticides (OP) (QCLot: 3662105)							
ES2116744-002	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	102	70.0	130	
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	100	70.0	130	
	EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	91.0	70.0	130		
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	78.3	70.0	130	
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	75.9	70.0	130	
EP075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QCLot: 3662104	()						
ES2116744-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	94.1	70.0	130	
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	103	70.0	130	
P080/071: Total	Petroleum Hydrocarbons (QCLot: 3662103)							
ES2116744-002	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	106	73.0	137	
202110744 002	, nonymous	EP071: C15 - C28 Fraction		2319 mg/kg	119	53.0	131	
		EP071: C29 - C36 Fraction		1714 mg/kg	115	52.0	132	
-D000/074. Total				in thightg	110	02.0	102	
	Petroleum Hydrocarbons (QCLot: 3664140)			00.5	07.4	70.0	100	
ES2116381-001	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	87.4	70.0	130	
	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 3662103)						
ES2116744-002	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	113	73.0	137	
		EP071: >C16 - C34 Fraction		3223 mg/kg	116	53.0	131	
		EP071: >C34 - C40 Fraction		1058 mg/kg	76.5	52.0	132	
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 3664140)						
ES2116381-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	83.6	70.0	130	
EP080: BTEXN (C	QCLot: 3664140)							
ES2116381-001	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	86.8	70.0	130	
		EP080: Toluene	108-88-3	2.5 mg/kg	93.2	70.0	130	
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	100	70.0	130	
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	97.0	70.0	130	
			106-42-3					
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	100	70.0	130	

Page	: 10 of 10
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

Sub-Matrix: SOIL				Ма	atrix Spike (MS) Repo	rt			
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080: BTEXN (QCLot: 3664140) - continued									
ES2116381-001	Anonymous	EP080: Naphthalene	91-20-3	2.5 mg/kg	90.2	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review

Work Order	: ES2116624	Page	: 1 of 6
Client	: CONSULTING EARTH SCIENTISTS	Laboratory	: Environmental Division Sydney
Contact	: ANDREW CARRAS	Telephone	: +61-2-8784 8555
Project	: CES190901 Frenchmans Road Randwick	Date Samples Received	: 04-May-2021
Site	:	Issue Date	: 11-May-2021
Sampler	:	No. of samples received	:1
Order number	:	No. of samples analysed	: 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)					40.00	17 May 2024	
QS1A	03-May-2021				10-May-2021	17-May-2021	✓
EA200: AS 4964 - 2004 Identification of Asbestos in Soils							
Snap Lock Bag (EA200) QS1A	03-May-2021				07-Mav-2021	30-Oct-2021	1
							V
EG005(ED093)T: Total Metals by ICP-AES Soil Glass Jar - Unpreserved (EG005T)							
QS1A	03-May-2021	10-May-2021	30-Oct-2021	1	10-May-2021	30-Oct-2021	1
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
QS1A	03-May-2021	10-May-2021	31-May-2021	✓	11-May-2021	31-May-2021	✓
EP066: Polychlorinated Biphenyls (PCB)							
Soil Glass Jar - Unpreserved (EP066)			47.14 0004			45 1 0004	
QS1A	03-May-2021	06-May-2021	17-May-2021	✓	07-May-2021	15-Jun-2021	✓
EP068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved (EP068) QS1A	03-May-2021	06-May-2021	17-May-2021	1	07-May-2021	15-Jun-2021	1
	03-May-2021	00-May-2021	17-Way-2021	~	07-Way-2021	13-3011-2021	•
EP068B: Organophosphorus Pesticides (OP)							
Soil Glass Jar - Unpreserved (EP068) QS1A	03-May-2021	06-May-2021	17-May-2021	1	07-May-2021	15-Jun-2021	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons		-			-		
Soil Glass Jar - Unpreserved (EP075(SIM))							
QS1A	03-May-2021	06-May-2021	17-May-2021	1	07-May-2021	15-Jun-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071)							
QS1A	03-May-2021	06-May-2021	17-May-2021	✓	07-May-2021	15-Jun-2021	✓
Soil Glass Jar - Unpreserved (EP080)	02 May 2024	07 May 2024	17-May-2021		07 May 2004	17 May 2021	,
QS1A	03-May-2021	07-May-2021	17-Iviay-2021	✓	07-May-2021	17-May-2021	✓

Page	: 3 of 6
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) QS1A	03-May-2021	06-May-2021	17-May-2021	~	07-May-2021	15-Jun-2021	✓
Soil Glass Jar - Unpreserved (EP080) QS1A	03-May-2021	07-May-2021	17-May-2021	4	07-May-2021	17-May-2021	~
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) QS1A	03-May-2021	07-May-2021	17-May-2021	1	07-May-2021	17-May-2021	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3).
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270 Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.

Page	: 6 of 6
Work Order	: ES2116624
Client	: CONSULTING EARTH SCIENTISTS
Project	: CES190901 Frenchmans Road Randwick

Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1
			DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the
			desired volume for analysis.

									Con WO	Lab /	Subcol
	6	H	AIN C	CHAIN OF CUSTODY -	1 -	client Fine	Fines Characterisation	Svdhøy Lab. Envirolab Services Envirolab Services 12 Ashley St, Chatswood, NSW 2067 P Ph 02 9910 6200 / sydney@envirolabt.gbm		Analysis: uised By / quished f	1 / Forwa
		ENVI	ROLAE	GROUP - N	ational phone n	ENVIROLAB GROUP - National phone number 1300 42 43 44	4 e report title):	<u>Perth Lab</u> - MPL Laborat 16-18 Hayden Crt Myare Ph 08 9317 2505 / Jab@		Date:	rd Lab /
Client: C	Client: Consulting Earth Scientists				Client Project Nar	ect Name / Number /	Randwick	Malhanna lah - Farina			Spli
Contact	Contact Person: Andrew Carars		-					1A Dalmore Drive Score:	stby VIC3179 S		t W
Project h	Project Mgr: Andrew Carras				PO No.:		1-dav	Ph 03 9763 2500 / melbc	ourne@envirola@com.au		0 6
Address	zempler: Andrew Carras Address: Level 1 Suite 3, 55-65 Grandvlew Street, Pymble NSW	view Stree	, Pymble N	enis	Date results required: Or choose: standard	r same day / 1 day /	2 day / 3 day 1 is required -	Brisbane Office - Envitrolab Services 20a. 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.dom.aµ	lab Services nyo, QLD 4014 bane@envirolab.com.el.		-9 A
		:			Note: Inform lab In Contract and	advance « e.e.		Adelaide Office - Envirol	lab Services		her
Phone:		Mobi	0497 018 918	918	Report format: 68	esdar/ over		7a The Parade, Norwood, SA 5067 Ph 0406 350 706 / adelaide@envirolah.c	d, SA 5067		<u>lo</u>
Emaîl:	andrew.carras@consultingearth.com.au; tristan.goodbodv@consultingearth.com.au	tingearth.c	om.au: 1.com.au	-	Lab commenus	⊨ruvironmental Divislon	slon	Pelmonistre d		5,523	
			·		<u>.</u>	Sydney Work Order Reterance	24		1120 04/0	12/20140	54-
	· · · · · · · · · · · · · · · · · · ·	•	:			201 202	-		d d d		H
_									Competits		
	sample	Sample Information							Provide as much	nuch	
Envirolab Sample ID	D Client Sample ID or Information	Depth	Date sampled	Type of sample	02 - 40 odr das M9311 318\H9TV	Telephone 61-2-8784 8555			information about the sample as you can	out the ou can	
	•				Con			C. Servers Co.			
~ r	4		12 5.5	فر			Elivinoria Ch	12 Asses	•		
	1212 A 12		-		X			Ph. (62) 0010 520	No 500-1	13.	
4	+				X		3				
-t	\sim r	*			×1		Date Raceived: Time Received:	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			
91	1 0/12/0/17						a By	\mathbf{F}			
90	4 ~	-	- - -				Cooling: Cooling	nbow epack			
6								1/Braken Mar			
	180								Sevel CASIA	4 14	
	214	+			X				IDLS OU	1 4	
2	KH 4105 CH					VAD ELS SYP		:Ajuo esn qej	÷.		<
Relinguish	d by (Company):	Consulting	Consulting Earth Scientists	lists	ᆁᄾ	2		Samples Received Cool or Amblent (circle one)	or Amblent (circle one)	3 5	2001
Print Name:	PN000	د چ	(VON		Print Name: 1	1005 0 SEST E	51	Temperature Received at: Temperature Necessary date	z Z (If applicable)		
Slanehure:	2/2/0					N	Authite - Jab copy / Blue - Client copy	copy / Pink - Retain in Book P	Book Pade No:		۰.

•

Appendix D Borehole Logs

Cli Pro Loo X-0	oject ent: oject: catio	: n: 1:		Enviror 11-19 F 337813	mans] nment French	Lodge Properties Pty Ltd al and Geotechnical Site Inves mans Road, Randwick, NSW Date Cor	nmenc	PH:	5 Grandview Street, Pyr (02) 8569 2200 FAX www.consul 07/11/2019	NTISTS Suite 3, Level 1 nble, NSW 2073 : (02) 9552 4399 tingearth.com.au Logg	B ed by:	G ID: H01 Sheet: 1 of 1 BR
	Coord			624659	5.5	Date Cor	-		07/11/2019	Chec	ked by:	MK
				(R.L) :		Hole Dia	meter ((mm):	1		1	
Drill	ling Ir	1form	ation			LITHOLOGY		1	Samples	Tests		
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor component	Consistency / Density	Moisture	Sample ID	TqS	100 Pocket 200 Penetrometer 400 (kPa)	Notes and additional observations
0						Topsoil: SAND, fine, dark brown/yellow. Trace grass, leaves and roots, moist. FILL: SAND, fine, dark brown/yellow. Trace Sandstone fragments. Trace grass and roots, moist.			BH01 - 0.5 m - Fill	SPT at 0.5 m {6,>30} refusal		
-	-				SP	SAND: fine, dark brown/yellow. Trace Sandstone fragments. Trace grass and roots, moist.	VD					_
-						Begin core drilling at 0.8 m bgl. Refer to BH01 corelog for details						1-

Project ID: Client: Project: Location:	Environm 11-19 Fre	ans Lodge Propertites Pty Ltd nental and Geotechnical Site Investigatio enchmans Road, Randwick, NSW	n 55 Grandview Street, Pymb PH: (02) 8569 2200 FAX: (0 www.consulting	NTISTS uite 3, Level 1 ble NSW 2073 02) 9983 0582 gearth.com.au	Corehole ID: BH01 Sheet: 1 of 1
X-Coord: Y-Coord: Surface Eleva	337813. 6246595 tion (R.L): Su		d: 07/11/2019	Logge Check	ed by: BR ked by: MK
Drilling Inform	ation	LITHOLOGY		Na	itural Defects
Depth (mBGL) R.L. (m) Method (Support)	% Coreloss Water	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	$MBa = 1000 \text{ extremely} \\ MBa = 1000 \text{ extremely} \\ 1000 extremel$	Spaci (mi OO 2 2 3 00	m) Description
		Refer to BH01 borelog for details. Sandstone: fine grained, light brown, very low strength, extremely weathered. Sandstone: fine grained, pale grey, low strength, moderately weathered, horizontal laminations of fine grained Shale, 10~20 man around a 2 a menthicle	XW MW		0.88~0.9 m, CZ, 0, R, Cu, EW 1– 0.96 m, P, 0, R, Cu, EW 1.17~1.21 m, CZ, 0, R, Cu, EW 1.32 m, P, 5, R, Cu, MW
2		mm spacing, 2~3 mm thick.	MW	>	1.72~ 2 m, CZ, 0, R, Cu, MW 2- 2.08~2.34 m, CZ, 0, R, Cu, MW
3 3 NMITC COME	- 0%0	Sandstone: fine grained, pale grey, low strength, moderately weathered.		62%	2.5 m, P, 5, R, Cu, MW 3- 3.19~3.21 m, CZ, 0, R, Cu, MW
4 4 4 4 4 4 4 4 4 4		SAND: fine, pale grey, moist, dense Sandstone: fine grained, pale grey, low strength, moderately weathered.		·	3.61~3.63 m, CZ, 0, R, Cu, MW 3.68~3.71 m, CZ, 0, R, Cu, MW 3.84 m, P, 10, R, Cu, 4 MW
		Sandstone: fine to medium grained, dark pink, low strength, moderately weathered.	MW	%0	4.6~4.61 m, CZ, 0, R, Cu, MW 4.73~5 m, CZ, 0, R, MW
		End of hole at 5 m. Target depth.			

Client: Project: Location:			Enviro 11-19 F	mans 1 nment French	Lodge Properties Pty Ltd al and Geotechnical Site Inve mans Road, Randwick, NSW	5 Grandview Street, Pyr (02) 8569 2200 FAX www.consul	NTIS TS Suite 3, Level 1 mble, NSW 2073 :: (02) 9552 4399 tingearth.com.au	B	G ID: H02 Sheet: 1 of 1			
	Coord			337767		Date Co		06/11/2019		ed by:	BR	
	Coord face			624657 (R L) ·	/.6	Date Co Hole Dia	-		06/11/2019	Chec	ked by:	MK
	Surface Elevation (Drilling Information			(R. L) .		LITHOLOGY		<u>,</u>	Samples	Tests		
			ation						Sampies	10303	er	
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor component	Consistency / Density	Moisture	Sample ID	SPT	100 Pocket 200 Penetrometer 400 (kPa)	Notes and additional observations
0					SP	Concrete: Pavement FILL: SAND, fine, brown/dark brown. Trace angular gravel. Trace roots, moist SAND: fine, brown/dark brown. Trace angular gravel. Trace roots, moist Begin core drillng at 0.75 m bgl. Refer to BH02 corelog for details	VD		BH02 - 0.5 m - Fill	SPT at 0.5 m {4, >30} refusal		
-	-1											- 1-

Project ID: Client: Project: Location:		Fre En	ench viroi	nmenta	RE odge Propertites Pty Ltd l and Geotechnical Site Investigat nans Road, Randwick, NSW	ion	55 Grandview Street, Pyn PH: (02) 8569 2200 FAX:	ENTISTS Suite 3, Level 1 Ible NSW 2073	Corehole ID: BH02 Sheet: 1 of 1		
Y	X-Coord: Y-Coord: Surface Elevat		6		577.6	Date Comme Date Comple Hole Diamete	ted:	07/11/2019 07/11/2019): 75 MM		ed by: BR ked by: MK	
D	rilling	Inform	ation			LITHOLOGY		1 1	N	atural Defects	
Denth (mBGL)	R.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	Estimated Strength MPa (20) $I = 10^{-1}$	Î	cing nm) Description	
1		^				Refer to BH02 borelog for details. Sandstone: fine grained, light brown to light grey, medium strength, moderately weathered, horizontal laminations of fine grained Shale, 20~30 mm spacing, 4-5 mm thick.	MW		94%	1.31~1.34 m, CZ, 0, R, Cu, MW 1.48~1.51 m, CZ, 0, R, Cu, MW	
4		- NMLC Core	0%0	•		Sandstone: fine grained, light grey, medium strength, slightly weathered, horizontal laminations of fine grained Shale, 5~10 mm spacing, 1~2 mm thick.	SW SW		78% → 100% →	1.7~1.74 m, CZ, 0, R, Cu, MW 2 2.69 m, P, 5, R, Cu, SW 3 4.05 m, P, 5, R, Cu, SW 4.32 m, P, 5, R, Cu, SW 4.32 m, P, 5, R, Cu, SW 4.65 m, P, 5, R, Cu, SW 5 5.9 m, P, 5, R, Cu, SW 6.28~6.29 m, CZ, 0, R, Cu, SW 6.35~6.37 m, CZ, 0, R, Cu, SW 6.75~6.83 m, CZ, 0, R, Cu, SW 6.75~6.83 m, CZ, 0, R, Cu, SW	
7						Sandstone: fine to medium grained, brown/ light pink, low strength, highly weathered.	HW			Cu, Sw, infli win fine dense Sand. 6.89~6.91 m, CZ, 0, R, Cu, MW 7.16 m, P, 5, R, Cu, HW 7.29~7.3 m, CZ, 0, R, Cu, HW	
9						Sandstone: fine grained, light pink, high strength, slightly weathered. End of hole at 8 m. Target depth.	SW			7.44-7.46 m, CZ, 0, R, Cu, HW 8 7.72-7.83 m, CZ, 0, R, Cu, SW	

Project: Location:				Enviror 11-19 F	mans l nment	FRE Lodge Properties Pty Ltd al and Geotechnical Site Inves mans Road, Randwick, NSW		5 Grandview Street, Py (02) 8569 2200 FAX	NTISTS Suite 3, Level 1 mble, NSW 2073	B	DG ID: BH03 Sheet: 1 of 1	
Y-(Coorc Coorc face	d:		337764 6246599 (R.L) :	9	Date Cor Date Cor Hole Dia	l:	06/11/2019 06/11/2019 110 mm		gged by: BR ecked by: MK		
Depth (mBGL)	Depth (mBGL) R.L. (m) Method (Support) Water			Symbol	USCS Symbol	LITHOLOGY Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor component	Consistency / Density	Moisture	Samples CI Samble ID	Tests	100 Pocket 200 Penetrometer 400 (kPa)	Notes and additional observations
0						Topsoil: SAND, fine, dark brown/yellow. Trace gravel. Trace grass, leaves and roots, moist. FILL: SAND, fine, dark grey/brown. Trace silt and roots, moist.			BH03 - 1.5 m - Fill	SPT at 0.5 to 0.95 m {2,2,2} N=4		- O-
-	-				SP	SAND: fine, light grey/dark grey, trace fine angular gravel, moist, very dense.	VD		BH03 -1.75 m - SAND	SPT at 1.5 to 1.75 m {10, >30} refusal		
	-2					Begin core drilling at 1.75 m bgl. Refer to BH03 corelog for details						2
		mpany e Type		Hagstron DB08	n Drill	ing Pty Ltd Operator Name:		Stev	e Bennett			Standard Sheets of abbreviations

Proj Clie Proj Loca	nt: ject:	:	Fre En	ench viro	nmenta	RE odge Propertites Pty Ltd l and Geotechnical Site Investigat nans Road, Randwick, NSW	ion	55 Grandview Street, F PH: (02) 8569 2200 FA		Corehole ID: BH03 Sheet: 1 of 1
X-Co Y-Co Surf	oord	l:		33776 52465 R.L):	599	Date Commer Date Complet Hole Diamete	ted:	06/11/2019 06/11/2019 a): 75 MM		ged by: BR sked by: MK
(mBGL)	Ing I B.T. (m)	Method (Support)	% Coreloss	Water	Symbol	LITHOLOGY Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	Estimated Strength MPa 01 100 SI 100	Badd Spa	cing nm) Description
		NMLC Core				Refer to BH03 borelog for details. Sandstone: fine grained, dark grey/ brown, extremely low strength, extremely weathered, trace fine, brown Sand. Sandstone: fine grained, light grey, medium strength, moderately weathered, horizontal laminations of fine grained Shale, 20~30 mm spacing, 1~2 mm thick. Sandstone: fine grained, pale grey, high strength, slightly weathered, horizontal laminations of fine grained Shale, 10~20 mm spacing, 1~2 mm thick. Trace fine, brown Sand. Sandstone: fine grained, jught brown/ light grey, high strength, slightly weathered, horizontal laminations of fine grained Shale, 10~20 mm spacing, 1~2 mm thick. Trace fine, brown Sand.	EW MW SW			2- 2.34 m, P, 5, R, Cu, MW 2.6 m, P, 5, R, Cu, SW 3- 3.08~3.1 m, CZ, 0, R, Cu, SW 4- 5- 5.38~5.39 m, CZ, 0, R, Cu, SW 5.53~5.54 m, P, 5, Cu, R, FR 5.59~5.64 m, CZ, 5, R,
						light grey Sand. End of hole at 8 m. Target depth.			94%	5.59~5.64 m, CZ, 5, R, Cu, FR 6- 6.16~6.17 m, CZ, 0, R, Cu, FR 6.63~6.65 m, SZ, 0, R, Cu, FR 7- 7.49~7.51 m, SZ, 0, R, Cu, FR 7.7~7.71 m, SZ, 0, R, Cu, FR 8
Drill		mpanj e Type		agstro B08	om Drill	ing Pty Ltd Operator Name:	S	Steve Bennett		Refer to Standard Sheets r details of abbreviations

Project ID:	CES1	90901-	FRE	Eastin	ng:	337817.7	7					LTING	
Project:	Envir	onment	al Site Investigation	Northi	ing:	6246616.	96	3		1	ARTH CIENT	IS TS	
Client:	Frenc	hmans	Lodge Properties Pty Ltd	Elevat	tion:	N/A		55 Gi		Street, P	ymble NSW FAX: (02) 99		
Location:	11-19	French	nmans Road, Randwick	vironmental Log:			E	3H0)4				
DRILLING	INFO.		LITHOLOGY			SAMPL	ING IN						
Depth Method	Water	r Symbol Description			Sa	mple ID	Туре	0 5.2 7.5 0 7.5				ELL DETAI	L
			FILL: Silty SAND, medium grained dark brown, trace rootlets and sar moist.	nd,	BH	04-0.15m							
0.5													
Drill Comp	any:	C	Consulting Earth Scientists	S		Date Con	nmen	ced:		03/0	5/202	1	
Drill Mode	l:	F	land Auger			Date Con	nplete	ed:		03/0	5/202	1	
Hole Diam	eter (n	nm): 1	10mm			Logged/c	heck	ed b	y:	AC /	ΤG		
											Sheet	: 1/1	

Project ID:	CES1	90901-	FRE	Easti	ng:	337802.7	6					SULTIN	IG
Project:	Enviro	onment	al Site Investigation	North	ning:	6246613.	.07	З	₹		ar Cie	TH NTISTS	•
Client:	Frenc	hmans	Lodge Properties Pty Lto	Eleva	ation:	N/A		55 G		w Street,		e NSW 2073 (02) 9983 058	2
Location:	11-19	French	nmans Road, Randwick	Env	vironı	mental Lo	og:	E	ЗH	05			
DRILLING	INFO.		LITHOLOGY		SAMPLING IN			FORMATION					
Depth Method	Water	Symbol	Description		Sa	Sample ID Type		0 5.2 5.7 7.5 0 7.5				WELL I	DETAIL
0.0			FILL: Silty SAND, medium graine dark brown, trace rootlets and subrounded sand, moist.	e sticity red	ВН	05-0.15m /							
Drill Comp	-		Consulting Earth Scientist	ts		Date Con Date Con						2021 2021	
Hole Diam	eter (n		10mm			Logged/c			oy:	AC	/ то	G	
	E. E										Sh	neet: 1/*	1

Project ID: CI	ES19090	1-FRE	Easti	ng:	337802.5	9			NSULTI	NG		
Project: Er	nvironmer	ntal Site Investigation	North	ning:	6246590.	93	₹	ſ	RTH ENTIST	s		
Client: Fr	renchman	s Lodge Properties Pty Lt	tion: N/A 55			55 Grandview	Suite 3, Level 1 55 Grandview Street, Pymble NSW 2073 PH: (02) 8569 2200 FAX: (02) 9983 0582					
Location: 11	1-19 Fren	chmans Road, Randwick	Env	vironr	nental Lo	og:	BHO	BH06				
	ō.	LITHOLOGY			SAMPL	ING IN	FORMATI		WELL	DETAIL		
Depth Method Wa	ater Symbo	DI Description		Sa	mple ID	Туре		5 .0 (ppm) 7.5 (DETAIL		
		FILL: Silty SAND, fine to mediur grained, dark brown, trace rooth moist. Hand auger refusal on infer Sandstone. No groundwat observed during drilling	rred	BH	06-0.15m							
							_		1000			
Drill Company	iy:	Consulting Earth Scientis	sts		Date Com			03/05				
Drill Model: Hole Diamete	ar (mm).	Hand Auger 110mm			Date Com Logged/c	-		03/05/ AC / 1				
	» (mm).				Loggealt		su ny.		Sheet: 1	/1		

Project ID: CE	ES190901-I	FRE E	asting:	337788.0	6		ONSULTING		
Project: En	vironmenta	al Site Investigation	lorthing:	6246582.4	42		ARTH CIENTISTS		
Client: Fre	enchmans	Lodge Properties Pty Ltd	Elevation:	tion: N/A 55		uite 3, Level 1 5 Grandview Street, P H: (02) 8569 2200 I			
Location: 11-	-19 French	mans Road, Randwick	Environ	mental Lo	og:	BH07			
DRILLING INFO	D.	LITHOLOGY		SAMPLING IN		RMATION			
Depth Method Wa	ater Symbol	Description	Sa	Sample ID Type		EID/PID (ppm)			
- O.O		FILL: Silty SAND, fine to medium grained, dark brown, trace rootlets, moist. Hand auger refusal on inferred Sandstone. No groundwater observed during drilling.	d	ł07-0.05m					
Drill Company: Consulting Earth Scientists Date Commenced: 03/05/2021									
Drill Model:		and Auger		Date Com)5/2021		
Hole Diameter		10mm		Logged/c	-		/ TG		
							Sheet: 1/1		

Project ID: CES	S190901-FRE	Easting:	337793.52		SULTING
Project: Env	vironmental Site Investigation	Northing:	6246627.45		ENTIS TS
Client: Fre	enchmans Lodge Properties Pt	y Ltd Elevation:	N/A	Suite 3, Level 1 55 Grandview Street, Pymb PH: (02) 8569 2200 FAX	
Location: 11-	19 Frenchmans Road, Randw	ick Environi	mental Log	: BH08	
DRILLING INFO	D. LITHOLOGY		SAMPLING	G INFORMATION	WELL DETAIL
Depth Method Wat	ter Symbol Description	Sa	mple ID Ty	FID/PID (ppm) /pe 0 2 7 7 2	
- 0.0	FILL: Silty SAND, fine to m grained, grey/ brown, trace subrounded gravels and ro moist.	inferred dwater	108-0.15m		
Drill Company: Drill Model: Hole Diameter	r: Consulting Earth Scie Hand Auger	illing.	Date Comm Date Comp Logged/che	leted: 03/05/	2021

Project: Environmental Site Investigation Northing: 6246612.07 Client: Frenchmans Lodge Properties Pty LtdElevation: N/A Suite 3, Level 1 Scient/Street, Pyroble NSW 2073 Ptr. (02) 9983 0582 Location: 11-19 Frenchmans Road, Randwick Environmental Log: BH09 DRILLING INFO. LITHOLOGY SAMPLING INFORMATION Sample ID WELL DET 0.0 Oncrete Concrete Image: Concrete Image: Concrete
Client: Frenchmans Lodge Properties Pty LtdElevation: N/A 55 Grandwie Street, Pymble NSW 2073 PH: (02) 9983 0582 Location: 11-19 Frenchmans Road, Randwick Environmental Log: BH09 DRILLING INFO. LITHOLOGY SAMPLING INFORMATION WELL DET Depth Method Water Symbol Description Sample ID Type 0 0 0.0 Image: Concrete Image: Conc
DRILLING INFO. LITHOLOGY SAMPLING INFORMATION WELL DET Depth Method Water Symbol Description Sample ID Type G G G G 0.0 Image: Concrete
Depth Method Water Symbol Description Sample ID Type FID/PID (ppm) © WELL DET 0.0 Image: Concrete I
Depth Method Water Symbol Description Sample ID Type Image: A model 0.0 Image: A model Image: A model Image: A model Image: A model
FILL: Silty SAND, fine to medium grained, grey/ brown, with subrounded gravels, moist. BH09-0.15m
Hand auger refusal on inferred Sandstone. No groundwater observed during drilling.
Drill Company: Consulting Earth Scientists Date Commenced: 03/05/2021 Drill Madel Userd Auger Date Commenced: 03/05/2021
Drill Model:Hand AugerDate Completed:03/05/2021Hole Diameter (mm):110mmLogged/checked by:AC / TG
Sheet: 1/1

Project ID: C	CES1	90901-	FRE East	ing:	327775.6				SULT	ING	
Project: E	Inviro	onment	al Site Investigation North	hing:	6246619.	25	₹		TH Intis'	TS	
Client: F	rencl	hmans	Lodge Properties Pty LtdEleva	ation:	N/A			l 1 v Street, Pymbl 9 2200 FAX:			
Location: 1	1-19	French	mans Road, Randwick En	vironmental Log: BH			BH	10			
	FO.				ING IN				L DETAIL		
Depth Method W	Vater	Symbol	Description	Sa	mple ID	Туре	0 FID/PII	5 .0 (ppm) 7.5 (WEL		
Hand auger			Concrete FILL: Silty SAND, fine to medium grained, grey/ brown, with subrounded gravels, moist. SAND: meidum to corase grained, light brown, moist. Hand auger refusal on inferred Sandstone. No groundwater observed during drilling.	BH	10-0.15m						
-	Drill Company: Consulting Earth Scientists					Date Commenced: Date Completed:			03/05/2021 03/05/2021		
	Drill Model:Hand AugerHole Diameter (mm):110mm				Logged/c	-		AC / T			
		,					2		neet:	1/1	

Project ID:	CES1	90901	-FRE	Easti	ng:	337772.7	9			NSULT	ING
Project:	Enviro	onment	tal Site Investigation	North	ning:	ning: 6246634.30			EARTH SCIENTISTS		TS
Client:	Frenc	hmans	Lodge Properties Pty Lto	Eleva	ation:	N/A		Suite 3, Level 55 Grandview PH: (02) 8569	v Street, Pym		
Location:	11-19	Frencl	hmans Road, Randwick	En	viron	mental Lo	og:	BH′	11		
DRILLING II	NFO.		LITHOLOGY							WEI	L DETAIL
Depth Method	Water	Symbol	Description		Sa	Imple ID	Туре	0 5: 5: 5: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7:	2 (ppm) 2 :2		
- 0.0			Concrete FILL: Silty SAND, fine to medium grained, grey/ brown, trace subrounded gravel, glass fragme and rootlets, moist.		BH	111-0.15m					
Drill Compa	anv:	(Consulting Earth Scientist	ts		Date Con	nmen	ced:	03/05	/2021	
Drill Model:			Hand Auger		Date Commenced: Date Completed:			03/05			
Hole Diame	lole Diameter (mm): 110mm					Logged/c			AC / T	ΓG	
									ç	Sheet:	1/1

Appendix E Calibration Certificate

Instrument	PhoCheck Tiger
Serial No.	T-105517

Air-Met Scientific Pty Ltd 1300 137 067

[tem	Test	Pass			Comment	5
Battery	Charge Condition	1	:	-		1 1 0410400
	Fuses	1				
	Capacity	✓				
	Recharge OK?	4				······································
Switch/keypad	Operation	*		· · · · ·		
Display	Intensity	✓				
	Operation	✓				
	(segments)					
Grill Filter	Condition	1				,
	Seal	4	1			
Pump	Operation	1				
·	Filter	1				
	Flow	1				
	Valves, Diaphragm	✓				
PCB	Condition	1				
Connectors	Condition	✓			• •• •••	
Sensor	PID	✓	10.6ev			
Alarms	Beeper	¥	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm	N/A	N/A
Software	Version	4				
Data logger	Operation	1				
Download	Operation	✓				······································
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

29/04/2021

Sensor	Serial no	Calibration gas and	Certified	Gas bottle	 Instrument Reading
		concentration		No	
PID Lamp		93ppm Isobutylene	NATA	SY361	 92,9ppm

Calibrated by: Kylie Rawlings

Calibration date:

Next calibration due: 26/10/2021

Appendix F PRO UCL Statistical Analysis

I General UCL Statistics for Pail Data Sets 2 User Selected Options 3 From File R2019/02/ES130001-FRE Freechmans Rd, Randwick Glu08b, Report, Preparation/08f, RAP and DGM. 4 From File R2019/02/ES130001-FRE Freechmans Rd, Randwick Glu08b, Report, Preparation/08f, RAP and DGM. 6 Number of Bootstrap Operations 2000 7 8 9 Laad 10 Central Statistics 11 Number of Vail Observations [11 Number of Distinct Observations [11 13 Central Statistics 14 Rew Statistics Log-transformed Statistics 15 Maintum of 200 Maintum of Log Data 2. 16 Maintum of 200 Maintum of Log Data 3. 17 Mean of 43.9 Mean of Log Data 3. 18 Maintum of 220 21 Coefficient of Vainto [122 22 Stearror of Mean [247.2 23 Normal Ottribution Test Statistics 0. <td< th=""><th></th><th>A B C</th><th>D E</th><th>F</th><th>G H I J K</th><th>L</th></td<>		A B C	D E	F	G H I J K	L
From File R:001902 CB318001-FRE Frenchmens Rd, Randwick GM08b_Report_Preparation/08f_RAP and DGRU 4 Full Precision OFF 6 Number of Bootstrap Operations 2000 7 A State 8 A State 9 Mumber of Bootstrap Operations 2000 10 General Statistics 11 Number of Valid Observations 11 12 Number of Valid Observations 11 13 Raw Statistics Log-transformed Statistics 14 Raw Statistics Log-transformed Statistics 15 Minimum 11 Minimum risk 16 Minimum 200 Minimum risk 17 Meedin 280 State for of Naio 20 Std. Error of Naio 7.2	1		General UCL Statistics	for Full Da	ta Sets	
Full Processon OFF 6 Confidence Coefficient 95% 8 Number of Boostrap Operations 2000 7 A 2000 8 4 2000 9 Lead 10 10 General Statistics 11 Number of Valid Observations 11 13 Confidence Statistics 14 Rew Statistics Mainimum 11 15 Mainimum 7200 Mainimum of Log Data 72 16 Maximum 7200 Maximum of Log Data 72 17 Meetin 683 Meetin 720 Maximum of Log Data 72 19 Statistics Sto of log Data 11 22 20 Std. Error of Mean 247.2 20 Sto of log Data 11 21 Coefficient Variation 1242 22 23 24 22 Steamere 1334 23 23 24 23 Relevent UCL Statistics 24 25 35 24 Normal Distribution Test Lognormal Distribution Test 25 </td <td>2</td> <td>User Selected Options</td> <td></td> <td></td> <td></td> <td></td>	2	User Selected Options				
Confidence Coefficient 95% Number of Bookstap Operations 2000 Image: State of Bookstap Operations 1 Image: State of Bookstap Operations 2 Image: State of Book	3		R:\2019\CES190901-FR	E Frenchn	nans Rd, Randwick GI\08b_Report_Preparation\08f_RAP and DG	il\UCL raw
Aumber of Bootstrap Operations 2000 2	4	Full Precision	OFF			
2 2 8 Lead 10 Ceneral Statistice 11 Number of Valid Observations [11 13 Term of Number of Valid Observations [11 14 Rew Statistics 15 Minimum [11 16 Minimum [120] 17 Mean 649.9 18 Median [240.9 20 Std. Error of Mean [247.2 21 Coefficient of Variation [1202 22 Std. Error of Mean [247.2 23 Std. Error of Mean [247.2 24 Coefficient of Variation [1202 25 Normal Distribution Test 26 Shapro Wilk Test Statistic [0.731 27 Shapro Wilk Test Statistic [0.731 28 Data not Kormal at 5% Significance Level 29 Assuming Normal Distribution 10 29 Shapro Wilk Test Statistic [0.731 21 Shapro Wilk Test Statistic [0.731 22 Shapro Wilk Test Statistic [0.731 23 Data not Kormal at 5% Significance Level 24 Data not Kormal at 5% Significance Level [0.74	5	Confidence Coefficient	95%			
6 0 Ceneral Statistics 11 General Statistics 12 Number of Valid Observations [11 Number of Distinct Observations [11] 13 Raw Statistics Log-transformed Statistics 14 Raw Statistics Log-transformed Statistics 15 Minimum [11 Minimum of Log Data 2.1 16 Maximum 2200 Meximum of Log Data 1.1 17 Mean [49.9 Meximum of Log Data 1.1 18 Median 290 SD of log Data 1.1 20 Site Error of Mean [247.2 2 21 Coefficient of Variation [252 2 22 Skewnes [1354 2 23 Octrificient of Variation [252 2 24 Relevant UCL Statistics 2 25 Shapiro Wilk Test Statistic [0.731 Snapiro Wilk Test Statistic [0.231 28 Shapiro Wilk Test Statistic [0.731 Snapiro Wilk Critical Value [0.55 29 Data not Normal at 5% Significance Level Data appear Lognormal Distribution [10.231 30 Assuming Normal Distribution [115 95% Chobsyshew (MVUE) UCL 2.32	6	Number of Bootstrap Operations	2000			
S Lead 10 General Statistics 11 Number of Valid Observations 11 12 Number of Valid Observations 11 13 Raw Statistics 14 Raw Statistics 15 Minimum 11 16 Maximum 01 cop Data 72 16 Maximum 01 cop Data 72 17 Mean 649.9 18 Median 290 20 Still Error of Mean 247.2 21 Coefficient of Variation 1.262 22 Stearmers 1.354 23 Statistics 24 Relevant UCL Statistics 25 Normal Distribution Teet Lognormal Distribution Teet 28 Shapiro Wik Knest Statistic 0.731 Shapiro Wik Knest Statistic 0.731 29 Data not Normal at 5% Significance Level Data apparar Lognormal Distribution 29 Data not Normal at 5% Significance Level Data apparar Lognormal Distribution 30 Assuming Normal Distribution Assuming Lognormal Distribution 31 95% Student%-UCL (1098 95% StudentWK WUE 10CL 25	7					
Image: constraint of the second statistics Constraint of the second statistics 11 Number of Valid Observations 11 Number of Distinct Observations 11 13 Rew Statistics Log-transformed Statistics 14 Rew Statistics Minimum 7200 15 Minimum 7200 Maximum of Log Data 7. 16 Maximum 2200 Maximum of Log Data 7. 17 Mean 649.9 Mean of Log Data 1. 18 Mutation 220 Statistics 20 Stat. Error of Mana 247.2 Stat. Error of Mana 247.2 21 Coefficient of Variation 1.262 Image: Coefficient of Variation 1.262 22 Skewness 1.354 Image: Coefficient of Variation 1.262 23 Coefficient of Variation 1.262 Image: Coefficient of Variation 1.262 24 Normal Distribution Test Lognormal Distribution Test 25 Normal Distribution Test Lognormal at 5% Significance Level 26 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.35 27 Bata not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 29 As	8					
III Ceneral Statistics 12 Number of Valid Observations 11 Number of Distinct Observations 11 13 Raw Statistics Log-transformed Statistics 11 14 Raw Statistics Log-transformed Statistics 11 15 Minimum 2200 Maximum of Log Date [2: 16 Maximum 2200 Maximum of Log Date [2: 18 Medinal 240 Mean of log Date [3: 20 Std. Error of Man [247.2 12 21 Coefficient of Variation [1:262 12 22 Skewness 1.354 23 Std. Error of Man [247.2 12 24 Relevant UCL Statistics 12 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Test Statistic [0 731 Shapiro Wilk Test Statistic [0 731 27 Data not Normal at 5% Significance Level Data appear Lognormal Distribution 28 Data not Normal at 5% Significance Level Data sperior Wilk Crotal Value [0 I 598 29 95% KuCL (Adjueted fof Skewnese) 95%	9	Lead				
Image: Constraint of Valid Observations 11 Number of Distinct Observations 11 13	10					
Image: statistics Log-transformed Statistics 14 Rew Statistics Minimum 11 Minimum of Log Data [2]. 16 Maximum 2200 Maximum of Log Data [2]. 17 Mean of 69.9 Mean of 10g Data [2]. 18 Median 290 SD of 10g Data [2]. 19 SD at Error of Mean 247.2	11			Gener	al Statistics	
International statistics Log-transformed Statistics 15 Minimum 11 Minimum of Log Data 2.3 16 Maximum 2200 Maximum of Log Data 7.3 17 Mean 649.9 Mean of Log Data 7.3 18 Median 280 SD of log Data 1. 19 SD 8 20 SD of log Data 1. 20 Std. Error of Mean 247.2 SD of log Data 1. 21 Coefficient of Variation 1.262 Std. 22 Skewness 1.354 Std. 23 Std. Std. 24 Relevant UCL Statistics Std. 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 28 Data not Normal at 5% Significance Level Data appeer Lognormal at 5% Significance Level 1049 29 Std. Std. Std. 31 95% Students-LT UCL (Chen-1995) 1164 97.5% Chebyshev (MVUE) UCL 37 32 95% Adjusted-CLT UCL (Chen-1995) 1164 97.5% Chebyshev (MVUE) UCL 37 36 Gar	12	Numb	per of Valid Observations	11	Number of Distinct Observations	11
Ind Minimum Ind Minimum of Log Data 7.3 16 Maximum 2200 Maximum of Log Data 7.3 17 Maan 649.9 Mean of log Data 5.3 18 Median 280 SD of log Data 1.3 19 SD flog Data 1.3 SD of log Data 1.3 20 Std. Error of Mean 247.2 Image 1.3 21 Coefficient of Variation 1.262 Image 1.3 23 Stewmess 1.354 Image 1.3 24 Relevant UCL Statistics Statistic 0.731 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.45 27 Shapiro Wilk Critical Value 0.45 Shapiro Wilk Critical Value 0.45 28 Data appear Lognormal Distribution Stage 1.4 29 Stage 1.4 Stage 1.4 20 Assuming Normal Distribution Assuming Lognormal Distribution 31 Stage 1.4 Stage 1.4 32 Stage 1.4 Stage 1.4 33 Stage 1.4 Stage 1.4	13					
Instruction Maximum 2200 Maximum of Log Data 7.4 17 Mean 649.9 Mean of fog Data 7.1 18 Median 290 SD of fog Data 7.1 19 SD 820 SD 10 20 Std. Error of Mean 247.2 20 Coefficient of Variation 1.262 20 21 Coefficient of Variation 1.262 20 Std. Error of Mean 247.2 21 24 Relevant UCL Statistics 21 Std.5 22 23 Relevant UCL Statistics 22 Stapiro Wilk Test Statistic 0.731 Shapiro Wilk Test Statistic 0.731 Shapiro Wilk Critical Value 0.25 Shapiro Wilk Critical Value	14	Raw St	atistics		Log-transformed Statistics	
Image: Normal Distribution Test Mean of Log Data Me	15		Minimum	11	Minimum of Log Data	2.398
No. No. SD S	16		Maximum	2200	Maximum of Log Data	7.696
SD SD S20 19 Std. Error of Mean 247.2 21 Coefficient of Variation 1.262 22 Skewness 1.354 23 Relevant UCL Statistics 24 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Test Statistic 0.731 Shapiro Wilk Critical Value 0.85 27 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 28 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 0 29 Assuming Normal Distribution Assuming Lognormal Distribution 95% H-UCL 12 29 Statusted for Skewness) 95% Chebyshew (MVUE) UCL 13 95% Adjusted-Crit OL (Chon-1995) 1164 97.5% Chebyshew (MVUE) UCL 13 20 Statusted for Skewness) 95% Adjusted-Crit OL (Chon-1995) 1164 97.5% Chebyshew (MVUE) UCL 13 31 95% Adjusted-Crit OL (Chon-1995) 1164 97.5% Chebyshew (MVUE) UCL 14 98 32 Statusted for Skewnes 10 0.52 Data appear Gamma Distributed at 5% Significance Level 33	17		Mean	649.9	Mean of log Data	5.507
13 Std. Error of Mean 247.2 21 Coefficient of Variation 1.262 22 Skewness 1.354 23 24 Relevant UCL Statistics 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Test Statistic 0.731 Shapiro Wilk Test Statistic 0.731 27 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 28 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 95% 95% H-UCL 12 28 30 Assuming Normal Distribution Assuming Lognormal at 5% Significance Level 95% 95% Chebyshev (MVUE) UCL 28 33 95% Adjusted-CLT UCL (Chen-1995) 1164 97.5% Chebyshev (MVUE) UCL 28 34 95% Modified-4 UCL (Johns-1978) 1115 99% Chebyshev (MVUE) UCL 54 35 36 Gamma Distribution Test Data appear Gamma Distributed at 5% Significance Level 38 1145 34 34 34 34 34	18		Median	290	SD of log Data	1.722
20 Std. Error of Mean 247.2 21 Coefficient of Variation 1.262 22 Skewness 1.354 23 Relevant UCL Statistics 24 Relevant UCL Statistics 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Test Statistic 0.731 27 Shapiro Wilk Critical Value 0.85 28 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 29			SD	820		
21 Coefficient of Variation 1.262 22 Skewness 1.354 23 Relevant UCL Statistics 24 Relevant UCL Statistics 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Test Statistic 0.731 27 Shapiro Wilk Critical Value 0.85 28 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 29 Assuming Normal Distribution Assuming Lognormal Distribution 31 95% Student's-t UCL [1098 95% Chebyshev (MVUE) UCL 12 32 95% VCLs (Adjusted for Skewnees) 95% Chebyshev (MVUE) UCL 23 33 95% Adjusted-CLT UCL (Chen-1995) [1164 97.5% Chebyshev (MVUE) UCL 54 34 95% Modified+ UCL (Johnson-1978) 1115 99% Chebyshev (MVUE) UCL 54 35 36 Gemme Distribution Test Data Distribution 37 k star (bias corrected) [0.52 Data appear Gamma Distributed at 5% Significance Level 38 Theta Star 1249 39 MLE of Standard Devi			Std. Error of Mean	247.2		
22 Skewness 1.354 23 Relevant UCL Statistics 25 Normal Distribution Test Lognormal Distribution Test 26 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 27 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.25 28 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 29 29			Coefficient of Variation	1.262		
Relevant UCL Statistics 24 Relevant UCL Statistics 25 Normal Distribution Test 26 Shapiro Wilk Test Statistic 0.731 Shapiro Wilk Test Statistic 0.731 27 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 28 Data not Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level 29 Data appear Lognormal Distribution 30 Assuming Normal Distribution Assuming Lognormal Distribution 31 95% Student's-t UCL 1098 95% Chebyshev (MVUE) UCL 22 33 95% Adjusted-CLT UCL (Chen-1995) 1164 97.5% Chebyshev (MVUE) UCL 23 34 95% Modified-t UCL (Johnson-1978) 1115 99% Chebyshev (MVUE) UCL 24 35 Data appear Gamma Distribution 37 K star (bias corrected) 0.52 Data appear Gamme Distribution 39 MLE of Mean 649.9						

	A B C D E	F	G	Н		J	K	L			
57											
58	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002)										
59					-	-					
60	and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.										
61											
62	Dieldrin										
63											
64		General	Statistics								
65 66	Number of Valid Observations				Number	r of Distinct C	bservations	2			
60 67											
68	Raw Statistics			L	.og-transforr	ned Statistic	S				
69	Minimum	0.05				Minimum	of Log Data	-2.996			
70	Maximum	13				Maximum	of Log Data	2.565			
71	Mean	1.227				Mear	n of log Data	-2.49			
72	Median	0.05				SE	of log Data	1.677			
73	SD	3.905									
74	Std. Error of Mean	1.177									
75	Coefficient of Variation	3.182									
76	Skewness	3.317									
77											
78											
79	Warning: Ther										
80	There are insufficient Distinct Va	•			•	nethods.					
81	Those methods will	l return a 'N/	A' value on y	our output o	lisplay!						
82											
83	It is necessary to have 4 or			•	•						
	However, results obtaine	ed using 4 to	9 distinct va	lues may no	t be reliable	•					
83		ed using 4 to	9 distinct va	lues may no	t be reliable	•	is.				
83 84 85 86	However, results obtaine It is recommended to have 10-15 or mo	ed using 4 to pre observat	9 distinct va tions for accu	lues may no urate and me	t be reliable	•	ːs.				
83 84 85	However, results obtaine It is recommended to have 10-15 or mo	ed using 4 to pre observat	9 distinct va	lues may no urate and me	t be reliable aningful boo	otstrap result					
83 84 85 86 87 88	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test	ed using 4 to pre observat Relevant U	9 distinct va tions for accu	lues may no urate and me	t be reliable aningful boo ognormal Di	otstrap result stribution Te	st	0.245			
83 84 85 86 87 88 89	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic	ed using 4 to pre observat Relevant U 0.345	9 distinct va tions for accu	lues may no urate and me	t be reliable aningful boo ognormal Dia S	otstrap result stribution Te hapiro Wilk T	st ⁻est Statistic				
83 84 85 86 87 88 89 90	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	ed using 4 to pre observat Relevant U 0.345	9 distinct va tions for accu	lues may no urate and me	t be reliable aningful boo ognormal Dia Si	otstrap result stribution Te hapiro Wilk T hapiro Wilk C	st Test Statistic Critical Value				
83 84 85 86 87 88 89 90 91	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic	ed using 4 to pre observat Relevant U 0.345	9 distinct va tions for accu	lues may no urate and me	t be reliable aningful boo ognormal Dia Si	otstrap result stribution Te hapiro Wilk T	st Test Statistic Critical Value				
83 84 85 86 87 88 89 90 91 92	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	ed using 4 to pre observat Relevant U 0.345	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable aningful boo ognormal Dia Si ognormal at	stribution Te hapiro Wilk T hapiro Wilk C	st Test Statistic Critical Value ance Level				
83 84 85 86 87 88 89 90 91 92 93	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	ed using 4 to pre observat Relevant U 0.345 0.85	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable aningful boo ognormal Dia Si ognormal at	stribution Te hapiro Wilk T hapiro Wilk C 5% Significa prmal Distrib	st Fest Statistic Fritical Value ance Level	0.85			
83 84 85 86 87 88 89 90 91 91 92 93 94	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	ed using 4 to pre observat Relevant U 0.345 0.85	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable paningful boo ognormal Di S Si ognormal at uming Logno	stribution Te hapiro Wilk T hapiro Wilk C 5% Significa	st Fest Statistic Critical Value ance Level ution 95% H-UCL	0.85			
83 84 85 86 87 88 89 90 91 92 93 94 95	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	Relevant U 0.345 0.85	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable aningful boo ognormal Dia Si ognormal at uming Logno	stribution Te hapiro Wilk T hapiro Wilk C 5% Significa prmal Distrib	st Test Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL	0.85 3.525 0.896			
83 84 85 86 87 88 89 90 91 92 93 92 93 94 95 96	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable aningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (stribution Te hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169			
83 84 85 86 87 88 89 90 91 92 93 92 93 94 95 96 97	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable aningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (stribution Te hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169			
83 84 85 86 87 88 89 90 91 92 93 91 92 93 94 95 96 97 98	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422	9 distinct va tions for accu	lues may no irate and me Lu Data not L	t be reliable aningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (99% (stribution Te hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169			
83 84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test	ed using 4 to pre observat Relevant U0 0.345 0.85 3.361 4.422 3.557	9 distinct va tions for accu CL Statistics	Ilues may no Irate and me La Data not L	t be reliable paningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (99% (99% (stribution Te hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 92 93 94 95 94 95 96 97 98 99 9100	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test	ed using 4 to pre observat Relevant U0 0.345 0.85 3.361 4.422 3.557	9 distinct va tions for accu CL Statistics	Ilues may no Irate and me La Data not L	t be reliable paningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (99% (99% (stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Stribution	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected)	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422 3.557 0.251 4.892	9 distinct va tions for accu CL Statistics	Ilues may no Irate and me La Data not L	t be reliable paningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (99% (99% (stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Stribution	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 95 93 94 95 96 97 95 96 97 98 99 100 101 101	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Adjusted-CLT UCL (Chen-1978) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean	ed using 4 to pre observat Relevant U(0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227	9 distinct va tions for accu CL Statistics	Ilues may no Irate and me La Data not L	t be reliable paningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (99% (99% (stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Stribution	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 95 96 97 97 98 99 1000	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45	9 distinct va tions for accu CL Statistics	Ilues may no Irate and me La Data not L	t be reliable paningful boo ognormal Dia Si ognormal at uming Logno 95% (97.5% (99% (99% (stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Stribution	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 95 96 97 97 98 99 100 101 102 103	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable paningful boo ognormal Dia S ognormal at uming Logno 95% (97.5% (99% (99% (Data Disc	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Stribution	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 95 96 97 97 98 99 100 101 102 103 104	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	ed using 4 to pre observat Relevant U0 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519 1.399	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable paningful boo ognormal Dia S ognormal at uming Logno 95% (97.5% (99% (99% (Data Disc	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 92 93 94 95 94 95 96 97 97 98 97 100 101 102 103 104 105	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519 1.399 0.0278	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable paningful boo ognormal Dia S ognormal at uming Logno 95% (97.5% (99% (99% (Data Disc	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Chebyshev (I Stribution ernable Distr tric Statistics 95	st Fest Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL	0.85 3.525 0.896 1.169 1.705			
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 95 96 97 97 98 99 91 100 101 102 103 104 105	However, results obtaine It is recommended to have 10-15 or model Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) Camma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value Adjusted Chi Square Value	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519 1.399 0.0278	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable paningful boo ognormal Dia S ognormal at uming Logno 95% (97.5% (99% (99% (Data Dia bllow a Diace Nonparamet	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I Chebyshev (I Chebyshev (I Stribution ernable Distr tric Statistics 95	st Test Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL ibution (0.05 ibution (0.05 ckknife UCL	0.85 3.525 0.896 1.169 1.705 5) 3.164			
83 84 85 86 87 88 89 90 91 92 93 94 95 93 94 95 96 97 95 96 97 97 98 99 100 101 102 103 104 105 106 107	However, results obtaine It is recommended to have 10-15 or more Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	ed using 4 to pre observat Relevant U0 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519 1.399 0.0278 1.092	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable paningful boo ognormal Dia S ognormal at uming Logno 95% (97.5% (99% (99% (Data Dia bllow a Diace Nonparamet	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I	st Test Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL ibution (0.05 ibution (0.05 ckknife UCL	0.85 3.525 0.896 1.169 1.705 5) 3.164 N/A			
83 84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 93 95 96 97 97 98 99 100 101 102 103 104 105 106 107 107	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	ed using 4 to pre observat Relevant U 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519 1.399 0.0278 1.092 3.842	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable paningful boo ognormal Dia S S ognormal at uming Logno 95% (97.5% (99% (99% (99% (99% (99% (0 Data Dis ollow a Disco ollow a Disco	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I	st Test Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL ibution (0.05 ibution (0.05 ckknife UCL otstrap UCL tstrap-t UCL	0.85 3.525 0.896 1.169 1.705 5) 3.164 N/A N/A			
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108	However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance Adjusted Chi Square Value	ed using 4 to pre observat Relevant U0 0.345 0.85 3.361 4.422 3.557 0.251 4.892 1.227 2.45 5.519 1.399 0.0278 1.092 3.842 0.835 0.573	9 distinct va tions for accu CL Statistics	Data not L Data not L	t be reliable aningful boo ognormal Dia S ognormal at uming Logno 97.5% (99%	stribution Te hapiro Wilk T hapiro Wilk T hapiro Wilk C 5% Significa ormal Distribu Chebyshev (I Chebyshev (I	st Test Statistic Critical Value ance Level ution 95% H-UCL MVUE) UCL MVUE) UCL MVUE) UCL MVUE) UCL ibution (0.05 % CLT UCL ckknife UCL otstrap UCL otstrap UCL otstrap UCL	0.85 3.525 0.896 1.169 1.705 5) 3.164 N/A N/A N/A			

	A B C D E	F	G H I J K	L
113	Data not Gamma Distributed at 5% Significance Lev	/el	95% Chebyshev(Mean, Sd) UCL	6.359
114			97.5% Chebyshev(Mean, Sd) UCL	8.579
115	Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	12.94
116	95% Approximate Gamma UCL	4.841		
117	95% Adjusted Gamma UCL	6.205		
118				
119	Potential UCL to Use		Use 99% Chebyshev (Mean, Sd) UCL	12.94
120				
121	Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UC	L.
122	These recommendations are based upon the resu	ults of the si	imulation studies summarized in Singh, Singh, and laci (2002)	
123	and Singh and Singh (2003). For a	dditional in	sight, the user may want to consult a statistician.	
124				
125				
126	Aldrin			
127				
128		General	Statistics	
129	Number of Valid Observations	11	Number of Distinct Observations	3
130				
131	Raw Statistics		Log-transformed Statistics	
132	Minimum	0.05	Minimum of Log Data	-2.996
133	Maximum	440	Maximum of Log Data	6.087
134	Mean	40.13	Mean of log Data	-1.898
135	Median	0.05	SD of log Data	2.797
136	SD	132.6		
	Std. Error of Mean	39.99		
137	Stu. End of Mean			
137 138	Coefficient of Variation	3.305		
138				
138 139	Coefficient of Variation			
138 139 140	Coefficient of Variation			
138 139 140 141	Coefficient of Variation Skewness	3.317	B Distinct Values in this data	
138 139 140 141 142	Coefficient of Variation Skewness Warning: Ther	3.317 e are only 3	B Distinct Values in this data form some GOF tests and bootstrap methods.	
138 139 140 141 142 143	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va	3.317 e are only 3 lues to perf		
138 139 140 141 142 143 144	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va	3.317 e are only 3 lues to perf	orm some GOF tests and bootstrap methods.	
138 139 140 141 142 143 144 145	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will	3.317 e are only 3 lues to perf return a 'N/	orm some GOF tests and bootstrap methods.	
138 139 140 141 142 143 144 145 146	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or n	3.317 e are only 3 lues to perf return a 'N/ more Disting	form some GOF tests and bootstrap methods. /A' value on your output display!	
138 139 140 141 142 143 144 145 146 147	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or n However, results obtaine	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods.	
138 139 140 141 142 143 144 145 146 147 148	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or n However, results obtaine	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable.	
138 139 140 141 142 143 144 145 146 147 148 149	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or n However, results obtaine It is recommended to have 10-15 or mo	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable.	
138 139 140 141 142 143 144 145 146 147 148 149 150	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or n However, results obtaine It is recommended to have 10-15 or mo	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results.	
138 139 140 141 142 143 144 145 146 147 148 149	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics	0.473
138 139 140 141 142 143 144 145 146 147 148 149 150 151	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics Lognormal Distribution Test	
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic	
138 139 140 141 142 143 144 145 146 147 148 149 150 151	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346 0.85	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics Lognormal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level	0.85
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346 0.85	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL Statistics	0.85
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U/ 0.346 0.85	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346 0.85 112.6 148.6	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL Statistics	0.85 3676 12.34 16.5
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 155 156 157 158 159 160	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346 0.85 112.6 148.6	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34 16.5
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	Coefficient of Variation Skewness Warning: There There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346 0.85 112.6 148.6	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34 16.5
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U 0.346 0.85 112.6 148.6 119.3	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. o 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL Statistics	0.85 3676 12.34 16.5 24.68
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	3.317 e are only 3 lues to perf return a 'N/ more Disting d using 4 to pre observat Relevant U/ 0.346 0.85 112.6 148.6 119.3 0.162	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34 16.5 24.68
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978)	3.317 e are only 3 lues to perfinence return a 'Na more Disting d using 4 to pre observat Relevant U 0.346 0.85 112.6 148.6 119.3 0.162 248.2	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34 16.5 24.68
138 139 140 141 142 143 144 145 146 147 148 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star	3.317 a are only 3 lues to perfirence of the second seco	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34 16.5 24.68
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	Coefficient of Variation Skewness Warning: Ther There are insufficient Distinct Va Those methods will It is necessary to have 4 or r However, results obtaine It is recommended to have 10-15 or mo It is recommended to have 10-15 or mo Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected) Theta Star MLE of Mean	3.317 e are only 3 lues to perfire return a 'Na more Disting d using 4 to pre observat Relevant U 0.346 0.85 112.6 148.6 119.3 0.162 248.2 40.13 99.8	form some GOF tests and bootstrap methods. /A' value on your output display! ct Values to compute bootstrap methods. 9 distinct values may not be reliable. tions for accurate and meaningful bootstrap results. CL Statistics CL	0.85 3676 12.34 16.5 24.68

Note: Suggestions regarding the selection of a 95% UCL are provided to heip the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2003). For additional Insight, the user may want to consult a statistician. Big and Singh (2003). For additional Insight, the user may want to consult a statistician. Big Consult a statistician. Iso (2003). Big Rew Statistics Log-transformed Statistics Big Rew Statistics Log-transformed Statistics 1.385 Big Maximum 0.4 Maximum of Log Data 1.477 Big Maximum 0.4 Maximum of Log Data 1.471 Big Maximum 0.4 Statistic 1.471 Big Maximum 0.4 Statistic 1.471 Big Maximum 0.4 Statistic	<u>г</u>			0				
100 Adjusted Chi Squam Value (0.399 95% Jackshift (2) 112.6 171 Anderson-During Test Statatic 3.327 95% Bondstrip UGI NA 172 Anderson-During Test Statatic 3.327 95% Bondstrip UGI NA 173 Anderson-During Test Statatic 3.327 95% Bondstrip UGI NA 174 Katmogozov-Smirnor 75S Usitati Value (0.381 95% Bondstrip UGI NA 174 Katmogozov-Smirnor 75S Usitati Value (0.382 95% Bondstrip UGI NA 175 Obstanct Gamma Distribution at \$% Significance Level 97.5% Chebyshev/Man, 5d) UCI, 214.4 NA 175 Oss/A Approximate Gamma UCL, 257.2 95% Bondstrip, UCI, 214.4 438 176 Osf/A Approximate Gamma UCL, 257.2 95% Chebyshev/Man, 5d) UCI, 214.4 438 176 Osf/A Approximate Gamma UCL, 257.2 95% Chebyshev/Man, 5d) UCI, 438 438 178 Peterial UCL to Lee Use 95% Chebyshev/Man, 5d) UCI, 438 438 178 Peterial UCL to Use Use 95% Chebyshev/Man, 5d) UCI, 438 438 178 Peterial UCL to Use Use 95% Chebyshev/Man, 5d) UCI, 438 438 17	160	_	-	G		1		105.9
100 95% Standard Bootsny UCI NA 172 Anderson-Darling Test Statistic 3.27 95% Standard Bootsny UCI NA 172 Anderson-Darling Test Statistic 3.27 95% Standard Bootsny UCI NA 173 Anderson-Darling Test Statistic 0.38 95% Decemble Bootsny UCI NA 174 Kolmogoro-Smirnor SK. Citacity Male 0.285 95% Statistics Bootsny UCI NA 174 Kolmogoro-Smirnor SK. Citacity Male 0.285 95% Chobyshew/Mean. Sci UCI 214.4 95% Chobyshew/Mean. Sci UCI 214.4 175 Assuming Gamma Distribution 95% Applications and Statistics 95% Chobyshew/Mean.Sci UCI 214.4 95% Chobyshew/Mean.Sci UCI 214.4 178 Striv Applications Gamma UCI 257.7 95% Chobyshew/Mean.Sci UCI 214.4 95% Statistics 95% Chobyshew/Mean.Sci UCI 214.4 179 Potential UCI to Use Use 95%, Chobyshew/Mean.Sci UCI 238.1 148 148 180 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and leid (2002) 148 148 140 140 180 Maximum 0.25 Maintimum of Log Data 21.43 139 148 140 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>95% Jackknife UCL</td> <td>112.6</td>							95% Jackknife UCL	112.6
Anderson-Darling Tref Statistic 3.327 95% Bostarip UCL NA 172 Anderson-Darling 5%. Critical Value 0.881 95%, Hall's Bootarap UCL NA 173 Kolongoov-Smirnov Test Statistic 0.489 95% Bostarap UCL NA 174 Deta not German Distribution 45 % Significance Level 95%. Chebyshew/Mean. 30; UCL 288 95%. Chebyshew/Mean. 30; UCL 288 172 Assuming German Distribution 95%. Adjusted German UCL 257.2 95%. Chebyshew/Mean. 30; UCL 438 173 Ostan of German Distribution 95%. Adjusted German UCL 257.2 95%. Chebyshew/Mean. 30; UCL 438 174 Mote: Staggestions regarding the selection of a 95%. UCL are provided to help the user to select the most appropriate 95%. UCL 438 178 Note: Staggestions regarding the selection of a 95%. UCL are provided to help the user to select the most appropriate 95%. UCL 438 178 and Singh. 2005). For additional insight, the user to select the most appropriate 95%. UCL 438 178 More 20 1 Number of Distinct Observations [179 More 20 1 1 179 More 20 1 1 179 More 20 1 1						95%		
121 Andeeson-Darling Sis Control Value () 2831 95% Hattis Society ULL NA 172 Kalmagarox-Smirnov Test Statistic 0.488 95%, Percentile Bootstrap ULL NA 173 Kolmagarox-Smirnov Test Statistic 0.488 95%, Percentile Bootstrap ULL NA 174 Colmogarox-Smirnov Test Statistic 0.498 95%, Chebyshev(Mean, Sd) ULL 188.8 174 Assuming Gamma Distribution 99%, Chebyshev(Mean, Sd) ULL 188.8 199 95%, Adjusted Gamma UCL 25%. Chebyshev(Mean, Sd) ULL 188.8 199 95%, Adjusted Gamma UCL 25.8 199 438 178 Chebyshev (Mean, Sd) ULL 188.8 199 148 148 148 178 Chebyshev (Mean, Sd) ULL 148 148 148 148 148 179 Potential UCL to Use Use 99%, Chebyshev (Mean, Sd) ULL 143 148 148 148 179 Potential UCL to Use Use 99%, Chebyshev (Mean, Sd) ULL 143 148 148 149 149 149 149 149 149 149 <t< td=""><td></td><td>Anderson-Darling Test Statistic</td><td>3.327</td><td></td><td></td><td></td><td></td><td></td></t<>		Anderson-Darling Test Statistic	3.327					
Note: Sumports-Smirnor Site 0.493 95% Presentile Bockstrap UCL NA 173 Data not Gamma Distribution at Six Significance Level 95% Chockstrap UCL NA 174 Data not Gamma Distribution at Six Significance Level 95% Chockstrap UCL NA 174 Data not Gamma Distribution 95% Chockstrap UCL NA 175 Data not Gamma Distribution 95% Chockstrap UCL NA 174 Data not Gamma Distribution 95% Chockstrap UCL NA 175 Deta not Gamma Distribution 95% Chockstrap UCL NA 176 Deta not Gamma Distribution 95% Chockstrap UCL NA 178 Potential UCL to Use Use 95% Chockstrap UCL NA 178 Potential UCL to Use Use 95% Chockstrap UCL NA 178 Adjusted Gamma UCL 287 / 2 Potential Editocan Note: Suggestions regarding the selection of a 95% UCL are provided to heigh the user to select the most apportale Site UCL 178 Note: Suggestions regarding the selection of a 95% UCL are provided to heigh the user to select the most apportale Site UCL Na 179 Note: Suggestion: <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>		-					•	
Note Science Live 95% BCA Bootrap UCL NA 172 Data not Gamma Distribution 95% Charbyshew(Nean, 50) UCL 287.8 173 Assuming Gamma Distribution 95% Charbyshew(Nean, 50) UCL 287.8 173 Assuming Gamma Distribution 95% Charbyshew(Nean, 50) UCL 287.8 174 95% Assuming Gamma Distribution 95% Charbyshew(Nean, 50) UCL 287.8 175 Charbyshew(Nean, 50) UCL 287.8 Charbyshew(Nean, 50) UCL 438 175 Potential UCL to Use Use 95% Charbyshew(Nean, 50) UCL 438 176 Note: Suggistions regarding the selection of a 95% UCL are provided to high the user to select the most appropriate 95% VCL 178 and Singh (2003). For additional insight, the user may want to consult a statistica 137 179 General Statistics 138 138 179 Mean 2.6 Maximum of Log Data 1.38 138 179 Mean 2.6 Maximum of Log Data 1.38 138 179 Mean 2.6 Maximum of Log Data 1.447 138								
Date not Gamma Distributed at \$% Significance Level 95% Chebysher/(Mean, So) UCL 214.4 173 Assuming Gamma Distribution 97.5% Chebysher/(Mean, So) UCL 283.8 173 95% Approximate Gamma UCL 257.2 95% Chebysher/(Mean, So) UCL 438 174 95% Adjusted Gamma UCL 257.2 95% Chebysher/(Mean, So) UCL 438 175 95% Adjusted Gamma UCL 257.2 95% Chebysher/(Mean, So) UCL 438 176 Potential UCL to Use Use 95% Chebysher/(Mean, So) UCL 438 178 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 178 mode Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 178 100 100 178 100 100 179 Number of Vaild Observations 11 Number of Distinct Observations 8 179 Mean 25 Minimum 0.100 Data 1.386 179 Mean 26 Mean 0 fog Data 1.386 179 Mean 26 Mean 0 fog Data 1.417 179 Mean 25 Sinterior of Mean 0 252 179 Mean 25 Sinterior 0 fog Data 1.447 179 Mean 26 </td <td></td> <td></td> <td></td> <td></td> <td></td>								
97.5% Chebyshev(Mean, Sc) UCL 88.8 173 Optimized Gamma Distribution 99% Chebyshev(Mean, Sc) UCL 438 173 95% Approximate Gamma UCL 25.2 143 183 95% Adjusted Gamma UCL 358.1 1 184 95% Adjusted Gamma UCL 358.1 1 185 Potential UCL to Use Use 95% Chebyshev (Mean, Sc) UCL 438 186 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 1 186 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 186 and Singh (2003). For additional insight, the user may want to consult a statistician. 187 BBP TChail 188 BP TChail 199 Rew Statistics 191 General Statistics 192 Number of Viald Observations 11 Number of Distinct Observations 8 193 Rew Statistics Log-transformed Statistics 194 Maximum of Log Data 1.486 Maximum of Log Data 1.436 195 Maximum of Statistics Minimum 0.25		-					•	
Assuming Gamma Distribution 99% Chebyshev(Mean, 8d) UCL 438 173 S5% Approximate Gamma UCL 257.2 180 95% Adjusted Gamma UCL 257.2 181 Use 95% Chebyshev(Mean, 8d) UCL 438 182 Potential UCL to Use Use 95% Chebyshev (Mean, 8d) UCL 438 183 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 184 Note: Suggestions are based upon the results of the issuitation studies summarized in Singh, Singh, and laci (2002) 185 end Singh and Singh (2003). For additional insight, the user may want to consult a statistican. 186 Enternal Statistics 187 Number of Valid Observations [11 Number of Distinct Observations 8 188 Enternal Statistics Minimum of Log Data -1.386 189 Raw Statistics Log-transformed Statistics 189 Maximum [2.6 Minimum of Log Data -1.386 189 Maximum [2.6 Minimum of Log Data -1.386 189 Mean of log Data 0.115 Statistics 199 Mean [2.6 Minimum of Log Data 0.115 199 Mean [2.6 Minimum of Log Data 0.115			¥61					
101 95% Approximate Gamma UCL 257.2 180 95% Approximate Gamma UCL 258.1 181		Assuming Gamma Distribution					•	
Bit Operation SSR 181 0 138.1 182 Potential UCL to Use Use 99%. Chebyshev (Mean, Sd) UCL 438. 183 Note: Suggestions regarding the selection of a 95%. UCL are provided to help the user to select the most appropriate 95%. UCL. 184 Note: Suggestions regarding the selection of a 95%. UCL are provided to help the user to select the most appropriate 95%. UCL. 185 and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 187 188 188 and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 189 BaP TEQ half 190 General Statistics 191 Number of Valid Observations [1 192 Number of Valid Observations [2 193 Maximum [2.5 194 Maximum [2.5 195 Maximum [2.6 196 Maximum [2.6 197 Mean of Iog Data [1.47 208 SD [2.081 209 SD [2.081 201 Coefficient of Variation [1.165 202 Shapiro Wilk Critical Value [2.769		-	257.2			99 % CI		430
000 Image: Control of the second								
182 Use 99%: Chebyshev (Man, Sd) UCL 438 4 4 183 Image: Chebyshev (Man, Sd) UCL 438 1 1 1 183 Note: Suggestions regarding the select ton of a 95% UCL are provided to help the use to select the most appropriate 95% UCL. 1<			336.1					
Bit Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 183 These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) 184 and Singh and Singh (2003). For additional insight, the user may want to consult a statistician. 187						00% Ch		400
Note: Suggestions regarding the selection of a 95% UCL are provided to heip the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2003). For additional Insight, the user may want to consult a statistician. Big and Singh (2003). For additional Insight, the user may want to consult a statistician. Big Consult a statistician. Iso (2003). Big Rew Statistics Log-transformed Statistics Big Rew Statistics Log-transformed Statistics 1.385 Big Maximum 0.4 Maximum of Log Data 1.477 Big Maximum 0.4 Maximum of Log Data 1.471 Big Maximum 0.4 Statistic 1.471 Big Maximum 0.4 Statistic 1.471 Big Maximum 0.4 Statistic						se 99% Ch	lebysnev (Mean, Sd) UCL	438
Desc These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) 186 and Singh and Singh (2003). For additional Insight, the user may want to consult a statistician. 187	183							
And Singh and Singh (2003). For additional neight, the user may want to consult a statistician. 187 188 189 189 189 191 192 193 194 195 195 196 197 198 199 191 192 193 194 195 196 197 198 199 190 191	184							
Bar Ceneral Statistics 138 Bar TEQ half 139 Bar TEQ half 130 General Statistics 131 Number of Vaild Observations 1 132 Number of Vaild Observations 1 133 General Statistics Minimum of Log Data 134 Raw Statistics Log-transformed Statistics 135 Minimum of Log Data 2.138 136 Maximum 8.4 Maximum of Log Data 2.128 136 Mean 2.6 Mean of Log Data 2.128 139 Mean 2.6 Mean of Log Data 1.147 139 SD of log Data 1.147 1.155 1.147 139 SD of log Data 1.185 1.125 1.125 130 Coefficient of Variation 1.185 1.125 1.125 131 Coefficient of Variation 1.185 1.125 1.125 132 Shapiro Wilk Test Statistic 0.85 Shapiro Wilk Test Statistic 0.85 132 Shap	185							
BaP Statistics 190 General Statistics 191 General Statistics 192 Number of Valid Observations 1 Number of Distinct Observations 8 192 Number of Valid Observations 1 Number of Distinct Observations 8 193 Log-transformed Statistics 194 Raw Statistics Log-transformed Statistics 195 Minimum 0.25 Minimum of Log Data 1.386 196 Median 0.8 SD of log Data 1.447 197 Median 0.8 SD of log Data 1.447 198 Median 0.8 SD of log Data 1.447 199 SD 3.081	186	and Singh and Singh (2003). For a	additional in	sight, the use	er may want t	o consult a	a statistician.	
BaP TEO half General Statistics 191 Caneral Statistics 192 Number of Valid Observations 11 Number of Distinct Observations 8 193 Image: Contract of Con	187							
Image: constraint of the start of	188							
Image: Product of Valid Observations Image: Product of Valid	189 B	aP TEQ half						
Image: Second	190							
Image: statistics Log-transformed Statistics 193 Raw Statistics Log-transformed Statistics 194 Maximum of Log Data 1.386 195 Maximum of Log Data 2.128 196 Maximum of Log Data 2.128 197 Mean 2.6 Mean of log Data 0.115 198 Median 0.8 SD of log Data 1.447 199 SD 3.081	191		General	Statistics				
Image Raw Statistics Log-transformed Statistics 195 Minimum 0.25 Minimum of Log Data 1.386 196 Maximum 0.25 Minimum of Log Data 2.128 197 Mean 2.6 Mean of log Data 0.115 198 Median 0.8 SD of log Data 1.447 199 SD 3.081 Image Image 1.447 199 SD of log Data 1.447 Image Image 1.447 199 SD 3.081 Image Image<	192	Number of Valid Observations	11			Numbe	er of Distinct Observations	8
Normal Distribution 0.25 Minimum of Log Data 1.386 196 Maximum 8.4 Maximum of Log Data 2.128 197 Mean 2.6 Mean of log Data 2.128 197 Median 0.8 SD of log Data 2.128 198 Median 0.8 SD of log Data 1.447 199 SD 3.081	193							
Image: statistic statis	194	Raw Statistics			L	og-transfor	med Statistics	
Instruction 8.4 Maximum of Log Data 2.128 197 Mean O flog Data 0.15 Mean of log Data 0.15 198 Median 0.8 SD of log Data 1.447 199 SD 3.081 Image: SD of log Data 1.447 200 Std. Error of Mean 0.929 Image: SD of log Data 1.447 201 Coefficient of Variation 1.185 Image: SD of log Data 1.477 202 Skewness 1.054 Image: SD of log Data 1.477 203 Image: SD of log Data 1.477 Image: SD of log Data 1.477 204 Image: SD of log Data 1.457 Image: SD of log Data 1.477 205 Relevant UCL Statistics Image: SD of log Data 1.477 Image: SD of log Data 0.85 206 Normal Distribution Test Lognormal Distribution Test Image: SD of log Data 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level Image: SD of log Data 0.85 210 Assuming Normal D	195	Minimum	0.25				Minimum of Log Data	-1.386
Image: Mean Part of Mean Part Part Part Part Part Part Part Part	196	Maximum	8.4				Maximum of Log Data	2.128
Median 0.8 SD of log Data 1.447 199 SD 3.081		Mean	2.6				Mean of log Data	0.115
199 SD 3.081 200 Std. Error of Mean 0.929 201 Coefficient of Variation 1.185 202 Skewness 1.054 203 Skewness 1.054 204 203 205 Relevant UCL Statistics 204 206 Normal Distribution Test Lognormal Distribution Test 207 Shapiro Wilk Test Statistic 0.769 208 Shapiro Wilk Critical Value 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal Distribution 210 Assuming Normal Distribution Assuming Lognormal Distribution 211 Assuming Normal Distribution Assuming Lognormal Distribution 212 95% Student's-t UCL [4.284 95% H-UCL [9.10, 19.16 213 95% Modified-t UCL (Chen-1995) 4.433 97.5% Chebyshev (MVUE) UCL [8.295 214 95% Modified-t UCL (Chen-1995) 4.433 97.5% Chebyshev (MVUE) UCL [15.144 215 95% Modified-t UCL (Chen-1995) 4.433 97.5% Chebyshev (MVUE) UCL [15.144 216 <td>198</td> <td>Median</td> <td>0.8</td> <td></td> <td></td> <td></td> <td>SD of log Data</td> <td>1.447</td>	198	Median	0.8				SD of log Data	1.447
200 Std. Error of Mean 0.929 0.929 201 Coefficient of Variation 1.185		SD	3.081					
Coefficient of Variation 1.185 Image: constraint of Variation Image: constraint of Varia I and Varia		Std. Error of Mean	0.929					
202 Skewness 1.054 203 204 205 Relevant UCL Statistics 206 Normal Distribution Test Lognormal Distribution Test 207 Shapiro Wilk Test Statistic 0.769 208 Shapiro Wilk Critical Value 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 210 210 211 Assuming Normal Distribution 4.284 213 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 8.295 216 217 Gamma Distribution Test Data appear Gamma Distribution 15.44 216 217 Gamma Distribution Test Data appear Gamma Distributed at 5% Significance Level 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 2.6 2.6 221 MLE of Standard Deviation 3.409 2.6 222 ML		Coefficient of Variation	1.185					
203 Relevant UCL Statistics 205 Normal Distribution Test Lognormal Distribution Test 206 Normal Distribution Test 0.85 207 Shapiro Wilk Test Statistic 0.769 208 Shapiro Wilk Critical Value 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 210 Assuming Normal Distribution Assuming Lognormal Distribution 211 Assuming Normal Distribution Assuming Lognormal Distribution 212 95% Student's-t UCL 4.284 95% H-UCL 19.16 213 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 217 Gamma Distribution Test Data appear Gamma Distributed at 5% Significance Level 15.44 219 Theta Star 4.47 22 2.6 22 214 MLE of Standard Deviation		Skewness	1.054					
204 Relevant UCL Statistics 205 Normal Distribution Test 206 Normal Distribution Test 207 Shapiro Wilk Test Statistic 0.769 Shapiro Wilk Test Statistic 0.85 208 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 210 Colspan="2">Shapiro Wilk Critical Value 0.85 210 Data not Lognormal Distribution Stagen of the Second of								
Relevant UCL Statistics 206 Normal Distribution Test Lognormal Distribution Test 207 Shapiro Wilk Test Statistic 0.769 Shapiro Wilk Test Statistic 0.85 208 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.85 210 Assuming Normal Distribution Assuming Lognormal Distribution 19.16 212 95% Student's-t UCL 4.284 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 225 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 10.71 Gamma Distribution Test Data Distribution 15.44 218 K star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 MLE of Standard Deviation 3.409 2.6								
Normal Distribution Test Lognormal Distribution Test 207 Shapiro Wilk Test Statistic 0.769 Shapiro Wilk Test Statistic 0.85 208 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.85 210 Assuming Normal Distribution Assuming Lognormal Distribution 95% H-UCL 19.16 212 95% Student's-t UCL 4.284 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 U 217 Gamma Distribution Test Data appear Gamma Distributed at 5% Significance Level 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 MLE of Mean 2.6 2.6 2.6 221 MLE of Standard Deviation 3.409 2.47 222 <			Relevant U	CL Statistics				
Aug Shapiro Wilk Test Statistic 0.769 Shapiro Wilk Test Statistic 0.85 207 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 208 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.85 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.85 210 Assuming Normal Distribution Assuming Lognormal Distribution 19.16 212 95% Student's-t UCL 4.284 95% Chebyshev (MVUE) UCL 8.295 213 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 Theta Star 4.47 19.16 19.16 19.14 219 MLE of Mean 2.6 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.		Normal Distribution Test			Lo	anormal D	istribution Test	
201 Shapiro Wilk Critical Value 0.85 Shapiro Wilk Critical Value 0.85 208 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 0.85 210		Shapiro Wilk Test Statistic	0.769			-		0.85
Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 209 Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level 210							-	
Z03 Assuming Normal Distribution Assuming Lognormal Distribution 211 Assuming Normal Distribution 95% Student's-t UCL 4.284 95% H-UCL 19.16 213 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 217 Gamma Distribution Test Data Distribution 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 2.6 2.6 221 MLE of Standard Deviation 3.409 2.6 2.6 222 nu star 12.8 2.6 2.6 2.6 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics 2.6		•			Data not Lo		•	
Assuming Normal Distribution Assuming Lognormal Distribution 212 95% Student's-t UCL 4.284 95% H-UCL 19.16 213 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216								
211 95% Student's-t UCL 4.284 95% H-UCL 19.16 213 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216		Assuming Normal Distribution			Assu	mina Loan	ormal Distribution	
212 95% UCLs (Adjusted for Skewness) 95% Chebyshev (MVUE) UCL 8.295 214 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 Data Distribution 217 Gamma Distribution Test Data Distribution 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 220 MLE of Mean 2.6 221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics		-	4,284		7,650	9 2091		19.16
213 95% Adjusted-CLT UCL (Chen-1995) 4.443 97.5% Chebyshev (MVUE) UCL 10.71 215 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 217 Gamma Distribution Test Data Distribution 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 220 MLE of Mean 2.6 221 MLE of Standard Deviation 3.409 222 nu star 12.8 233 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics						Q5%		
214 95% Modified-t UCL (Johnson-1978) 4.333 99% Chebyshev (MVUE) UCL 15.44 216 217 Gamma Distribution Test Data Distribution 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 220 MLE of Mean 2.6 221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics			1 113					
213 213 216 217 217 Gamma Distribution Test 218 k star (bias corrected) 219 Theta Star 220 MLE of Mean 221 MLE of Standard Deviation 222 nu star 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics		• • • • •						
217 Gamma Distribution Test Data Distribution 218 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 220 MLE of Mean 2.6 221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics	215	35 % Woulled-LOCE (Johnson-1978)	4.000			33%		13.44
217 k star (bias corrected) 0.582 Data appear Gamma Distributed at 5% Significance Level 219 Theta Star 4.47 220 MLE of Mean 2.6 221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics	216	Comme Diskikatis Tool				Dete P	iotelhutic-	
219 Theta Star 4.47 220 MLE of Mean 2.6 221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics	217		0.500					aval
219 MLE of Mean 2.6 220 MLE of Standard Deviation 3.409 221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics	218			Data	appear Gan	iina Distrib	outed at 5% Significance I	-evei
221 MLE of Standard Deviation 3.409 222 nu star 12.8 223 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics	219							
nu star 12.8 222 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics	220		-					
222 Approximate Chi Square Value (.05) 5.755 Nonparametric Statistics A diverte d level of Similiane and Similiane	221							
	222							
224 Adjusted Level of Significance 0.0278 95% CLT UCL 4.128	223				۱۱	Nonparame		
	224	Adjusted Level of Significance	0.0278				95% CLT UCL	4.128

	A B C D E	F	G	н	1	J	К	L
225	Adjusted Chi Square Value		G			•	knife UCL	4.284
226					95% 5	Standard Boot	strap UCL	4.035
227	Anderson-Darling Test Statistic	0.741				95% Boots	trap-t UCL	4.948
228	Anderson-Darling 5% Critical Value	0.765			95	% Hall's Boot	strap UCL	3.877
229	Kolmogorov-Smirnov Test Statistic	0.207			95% P	ercentile Boot	strap UCL	4.095
229	Kolmogorov-Smirnov 5% Critical Value					5% BCA Boot		
	Data appear Gamma Distributed at 5% Significance I					byshev(Mean		
231						byshev(Mean	,	
232	Assuming Gamma Distribution					byshev(Mean	,	
233	95% Approximate Gamma UCL	5.78						
234	95% Adjusted Gamma UCL							
235		0.010						
236	Potential UCL to Use			U	lse 95% An	proximate Ga	mma UCI	5 78
237								
238	Note: Suggestions regarding the selection of a 95%	UCL are n	rovided to hel	n the user to s	elect the m	ost annronria	te 95% LI(<u>ו</u> ב
239	These recommendations are based upon the res							
240	and Singh and Singh (2003). For a				-	-		
241			isiyin, the use	i may want to	consult a s	statistician.		
242								
243								
211	Bap TEQ							
245		0						
246			I Statistics					
247	Number of Valid Observations	11			Number	of Distinct Ob	servations	8
248			1					
249	Raw Statistics	1		Loç	g-transform	ed Statistics		
250	Minimum	0.25				Minimum o	-	
251	Maximum	8.4				Maximum o	-	
252	Mean	2.591				0.098		
253	Median	0.8				SD o	of log Data	1.456
254	SD	3.087						
255	Std. Error of Mean	0.931						
256	Coefficient of Variation	1.192						
257	Skewness	1.053						
258								
259								
260		Relevant L	JCL Statistics					
261	Normal Distribution Test			Log	normal Dis	tribution Test		
262	Shapiro Wilk Test Statistic	0.767			Sh	apiro Wilk Te	st Statistic	0.844
263	Shapiro Wilk Critical Value	0.85			Sh	apiro Wilk Crit	ical Value	0.85
264	Data not Normal at 5% Significance Level			Data not Log	normal at !	5% Significan	ce Level	<u> </u>
265						-		
266	Assuming Normal Distribution			Assum	ning Lognor	mal Distributi	on	
267	95% Student's-t UCL	4.278			- •		5% H-UCL	19.47
267	95% UCLs (Adjusted for Skewness)				95% C	hebyshev (M		
268 269	95% Adjusted-CLT UCL (Chen-1995)	4.438				hebyshev (M	-	
	95% Modified-t UCL (Johnson-1978)					hebyshev (M	,	
270 271						,	,	<u> </u>
	Gamma Distribution Test				Data Dist	tribution		
272	k star (bias corrected)	0.575	Data Fo	ollow Appr. Gai			Significand	e Level
273	Theta Star							
274	MLE of Mean							
275	MLE of Mean MLE of Standard Deviation							
276	nu star							
277		-		b 1.	nnoremet	in Ctationian		
278	Approximate Chi Square Value (.05)			NC	parametr	tic Statistics		4 100
070	Adjusted Level of Significance					95%	CLT UCL	4.122
279	Adjusted Chi Square Value	4.04.1				050/	knife UCL	4.070

Г	А	В	С		D		E	F	G	Н	1	L.	К	1		
281	7	<u> </u>					<u> </u>	• •			959	v	d Bootstrap UCL	4.059		
282			And	derson-	-Darling	Test St	tatistic	0.771				95%	Bootstrap-t UCL	4.81		
283			Anderso	on-Darl	ling 5%	Critical	Value	0.766				95% Hall's	s Bootstrap UCL	3.86		
284			Kolmog	gorov-S	Smirnov	7 Test St	tatistic	0.203			95%	Percentil	e Bootstrap UCL	4.141		
285		K	olmogoro	v-Smirr	nov 5%	Critical	Value	0.266				95% BC/	A Bootstrap UCL	4.327		
286	Data fol	low Appr. G	amma Di	istribut	ion at 5	% Signi	ificanc	e Level			95% C	Chebyshev	(Mean, Sd) UCL	6.649		
287											97.5% C	Chebyshev	(Mean, Sd) UCL	8.404		
288		As	suming G	iamma	Distrib	ution		1			99% C	Chebyshev	(Mean, Sd) UCL	11.85		
289			95%	6 Appro	oximate	Gamma	a UCL	5.795								
290				95% A	djusted	Gamma	a UCL	6.669								
291																
292			Potentia	al UCL	. to Use)					Use 95%	Approxima	ate Gamma UCL	5.795		
293																
294			-	-				-		-			propriate 95% U			
295	Т	hese recor				-							, and laci (2002)		
296			and Sin	gh and	l Singh	(2003).	For a	additional ir	nsight, the use	er may wan	t to consult	a statistici	an.			
297																
298		_														
299 t	baP TEQ pq	I														
300																
301									I Statistics							
302			Nu	umber o	of Valid	Observ	ations	11			Numb	er of Distir	nct Observations	8		
303				<u></u>												
304	Raw Statistics Minimum 0.25							0.05	Log-transformed Statistics Minimum of Log Data -1.386							
305													-			
306							ximum						num of Log Data			
307							Nedian	2.609				ľ	Mean of log Data			
308						IV		0.9 3.075					SD of log Data	1.444		
309					C+d	Error of	-									
310				C		nt of Va										
311				C	oeniciei		wness									
312							wiie55	1.000								
313																
314								Relevant I	JCL Statistics							
315			Normal D	Distribu	ition Te	st					_ognormal [Distributio	n Test			
316						Test St	tatistic	0.772		•	-		/ilk Test Statistic	0.852		
317						Critical						•	ilk Critical Value			
318		Data not	t Normal a	•				0.00		Data appea		•	ignificance Leve			
319					- 3											
320		As	suming N	lormal	Distribu	ution				Ass	suming Log	normal Dis	stribution			
321 322						udent's-	-t UCL	4.29			0 0		95% H-UCL	. 19.2		
322		95%	UCLs (A								95%	6 Chebysh	ev (MVUE) UCL			
323 324			95% Adju	-				4.449				•	ev (MVUE) UCL			
324 325			95% Mod			-							ev (MVUE) UCL			
326																
320 327			Gamma [Distribu	ution Te	est					Data D	Distributior	1			
327				k	star (bi	ias corre	ected)	0.586	Data	appear Ga	amma Distri	buted at 5	% Significance	Level		
329							ta Star									
330						MLE of	Mean	2.609								
331				MLE o	of Stand	dard Dev	viation	3.41								
332						r	nu star	12.88								
333			Approxir	nate C	hi Squa	re Value	e (.05)	5.814			Nonparam	etric Stati	stics			
334			Ad	ljusted	Level o	of Signifi	icance	0.0278					95% CLT UCL	4.134		
335				Adjust	ted Chi	Square	Value	5.06				95%	% Jackknife UCL	4.29		
336											959	% Standar	d Bootstrap UCL	4.078		
000								1	1					<u> </u>		

— —	A B C D E	F	G	Н	1 1	J	К	
337	A B C B E Anderson-Darling Test Statistic	-	G	п		•	Bootstrap-t UCL	⊥ 4.849
338	Anderson-Darling 5% Critical Value	0.765				95% Hall'	s Bootstrap UCL	3.893
339	Kolmogorov-Smirnov Test Statistic				95%		e Bootstrap UCL	
339 340	Kolmogorov-Smirnov 5% Critical Value						A Bootstrap UCL	
	Data appear Gamma Distributed at 5% Significance I				95% ((Mean, Sd) UCL	
341							(Mean, Sd) UCL	
342	Assuming Gamma Distribution						(Mean, Sd) UCL	
343	95% Approximate Gamma UCL	5 781			00700	Shebyenev		11.00
344	95% Adjusted Gamma UCL							
345		0.042						
346	Potential UCL to Use				1100 95%	Approvim	ate Gamma UCL	5 781
347					030 00 /0			5.701
348	Note: Suggestions regarding the selection of a 95%		ovided to bel	n the uper t	o coloct the			
349				-			-	
350	These recommendations are based upon the res							
351	and Singh and Singh (2003). For a		signt, the use	er may wan	to consult	a statistic	lan.	
352								
353								
354	TRH >C16-C34							
355								
356			Statistics					-
357	Number of Valid Observations	11			Numb	per of Distir	nct Observations	7
358								
359	Raw Statistics				Log-transfo			
360	Minimum	50				Minir	num of Log Data	3.912
361	Maximum	1900				Maxir	num of Log Data	7.55
362	Mean	365.5				ſ	Mean of log Data	5.089
363	Median	120					SD of log Data	1.304
364	SD	551						
365	Std. Error of Mean	166.1						
366	Coefficient of Variation	1.508						
367	Skewness	2.542						
368								
369								
370		Relevant U	CL Statistics					
371	Normal Distribution Test			L	ognormal	Distributio	n Test	
372	Shapiro Wilk Test Statistic	0.64			-	Shapiro W	/ilk Test Statistic	0.845
373	Shapiro Wilk Critical Value	0.85				Shapiro W	ilk Critical Value	0.85
373	Data not Normal at 5% Significance Level			Data not		•	nificance Level	
375					•			
	Assuming Normal Distribution			Ass	suming Log	normal Dis	stribution	
376	95% Student's-t UCL	666.5					95% H-UCL	1684
377	95% UCLs (Adjusted for Skewness)				959	% Chehvsh	ev (MVUE) UCL	
378	95% Adjusted-CLT UCL (Chen-1995)	774.7					ev (MVUE) UCL	
379	95% Modified-t UCL (Johnson-1978)						ev (MVUE) UCL	
380		307.0			537	U UIGDYSII		1700
381	Gamma Distribution Test				Data I	Distributior	,	
382	k star (bias corrected)	0.509	Data 5-	low Appr				
383				now Appr.	Gamma Dis		at 5% Significan	e level
	Theta Star							
384		a dia la la						
384 385	MLE of Mean							
384 385 386	MLE of Mean MLE of Standard Deviation	472.7						
385	MLE of Mean MLE of Standard Deviation nu star	472.7 13.15						
385 386 387	MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	472.7 13.15 5.993			Nonparam	netric Stati		
385 386	MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance	472.7 13.15 5.993 0.0278			Nonparam		95% CLT UCL	
385 386 387 388	MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05)	472.7 13.15 5.993 0.0278				95%	95% CLT UCL % Jackknife UCL	666.5
385 386 387 388 388	MLE of Mean MLE of Standard Deviation nu star Approximate Chi Square Value (.05) Adjusted Level of Significance	472.7 13.15 5.993 0.0278				95%	95% CLT UCL	666.5

	А	В	С	D	E	F	G	Н		J	К	L
393			Anderson-I	Darling 5% C	ritical Value	0.763			ç	95% Hall's Bo	otstrap UCL	1709
394			Kolmogoro	ov-Smirnov T	est Statistic	0.262			95% I	Percentile Bo	otstrap UCL	652.7
395		K	olmogorov-S	mirnov 5% C	ritical Value	0.265				95% BCA Bo	otstrap UCL	810.9
396	Data fo	ollow Appr. G	amma Distri	ibution at 5%	Significanc	e Level			95% Cł	ebyshev(Mea	an, Sd) UCL	1090
397									97.5% Cł	ebyshev(Mea	an, Sd) UCL	1403
398		As	suming Gam	ma Distribut	ion				99% Cł	ebyshev(Mea	an, Sd) UCL	2018
399			95% A	pproximate G	amma UCL	801.8						
400			959	% Adjusted G	amma UCL	919.5						
401												
402			Potential U	JCL to Use					Use 95% A	pproximate G	amma UCL	801.8
402												
404	No	ote: Suggesti	ions regardir	ng the selecti	on of a 95%	UCL are pro	ovided to he	lp the user to	o select the	most appropr	iate 95% UC	L.
404			-	-		-		-		h, Singh, and		
405			and Singh	and Singh (2	2003). For a	additional ins	sight, the use	er may want	to consult a	statistician.		
400			-		•		-	-				
408 409	B(a)P											
409	. ,											
						General	Statistics					
411			Numb	per of Valid O	bservations				Numbe	r of Distinct O	bservations	9
412												-
413			Raw St	tatistics					Log-transfor	med Statistic	S	
414					Minimum	0.025					of Log Data	-3.689
415					Maximum						of Log Data	
416					Mean						n of log Data	
417 410					Median	0.58					of log Data	
418 419						2.188						
419				Std. Er	rror of Mean	0.66						
421				Coefficient	of Variation	1.215						
422					Skewness	1.032						
423												
424												
425						Relevant U	CL Statistics	;				
426			Normal Dist	ribution Test				L	ognormal Di	stribution Te	st	
427			S	hapiro Wilk T	est Statistic	0.784			S	hapiro Wilk T	est Statistic	0.939
428			Sł	napiro Wilk C	ritical Value	0.85			S	hapiro Wilk C	ritical Value	0.85
429		Data not	Normal at 5	% Significan	ce Level			Data appea	r Lognormal	at 5% Signifi	cance Level	
430												
431		As	suming Norr	nal Distributi	on			Ass	uming Logn	ormal Distribu	ution	
432				95% Stuc	dent's-t UCL	2.996				9	95% H-UCL	50.39
433		95%	UCLs (Adju	sted for Skew	wness)				95%	Chebyshev (N	VVUE) UCL	8.422
434			95% Adjuste	d-CLT UCL (Chen-1995)	3.105			97.5%	Chebyshev (N	VUE) UCL	11.04
435			95% Modifie	ed-t UCL (Joh	nson-1978)	3.03			99%	Chebyshev (N	VUE) UCL	16.2
436												
437			Gamma Dist	ribution Test	:				Data Di	stribution		
438				k star (bia	s corrected)	0.473	Data	a appear Ga	mma Distrib	uted at 5% Si	ignificance L	.evel
439					Theta Star	3.805						
440				Μ	ILE of Mean	1.8						
441	<u></u>		MI	LE of Standa	rd Deviation	2.617						
442					nu star	10.41						
443			Approximat	e Chi Square	Value (.05)	4.199			Nonparame	tric Statistics		
444			Adjus	ted Level of S	Significance	0.0278				95	% CLT UCL	2.886
445			Ad	ljusted Chi So	quare Value	3.579				95% Jao	ckknife UCL	2.996
446									95%	Standard Bo	otstrap UCL	2.83
447			Anders	son-Darling T	est Statistic	0.374				95% Boot	tstrap-t UCL	3.357
448			Anderson-I	Darling 5% C	ritical Value	0.776			ç	5% Hall's Bo	otstrap UCL	2.729
						1	1					

449		-				
	A B C D E Kolmogorov-Smirnov Test Statistic	F 0.167	G	Н	I J K 95% Percentile Bootstrap UC	L CL 2.92
449 450	Kolmogorov-Smirnov 5% Critical Value				95% BCA Bootstrap UC	
451	Data appear Gamma Distributed at 5% Significance I	Level			95% Chebyshev(Mean, Sd) U(CL 4.676
452					97.5% Chebyshev(Mean, Sd) UC	CL 5.921
453	Assuming Gamma Distribution				99% Chebyshev(Mean, Sd) U	CL 8.365
454	95% Approximate Gamma UCL	4.463				
455	95% Adjusted Gamma UCL	5.236				
456						
457	Potential UCL to Use	1			Use 95% Approximate Gamma UC	CL 4.463
458						
459	Note: Suggestions regarding the selection of a 95%	5 UCL are pr	ovided to hel	p the user to	select the most appropriate 95%	UCL.
460	These recommendations are based upon the res)2)
461	and Singh and Singh (2003). For a	additional in:	sight, the use	er may want t	o consult a statistician.	
462						
463						
464	Aldrin					
465						
466			Statistics			
467	Number of Valid Observations	11			Number of Distinct Observatio	ns 3
468			1			
469	Raw Statistics			L	og-transformed Statistics	
470	Minimum				Minimum of Log Da	
471	Maximum				Maximum of Log Da	
472	Mean	40.13			Mean of log Da	
473		132.6			SD of log Da	10 2.797
474	SD Std. Error of Mean					
475	Coefficient of Variation					
476	Skewness					
477		5.517				
478						
479 480	Warning: The	re are only 3	B Distinct Valu	ues in this da	ta	
480		-				
	There are insufficient Distinct Va	alues to perf			•	
481	There are insufficient Distinct Va Those methods wil		/A' value on y	our output d	splay!	
481 482			/A' value on y	our output d	splay!	
481 482 483		ll return a 'N/	-	-		
481 482 483 484	Those methods wil	Il return a 'Na more Distine	ct Values to c	compute boot	strap methods.	
481 482 483 484 485	Those methods wil	Il return a 'N/ more Distine ed using 4 to	ct Values to c 9 distinct va	compute boot	strap methods. be reliable.	
481 482 483 484	Those methods wil It is necessary to have 4 or However, results obtained	Il return a 'N/ more Distine ed using 4 to	ct Values to c 9 distinct va	compute boot	strap methods. be reliable.	
481 482 483 484 485 485	Those methods wil It is necessary to have 4 or However, results obtained	Il return a 'N more Disting ed using 4 to ore observat	ct Values to c 9 distinct va	compute boot	strap methods. be reliable.	
481 482 483 484 485 485 486 487	Those methods wil It is necessary to have 4 or However, results obtained	Il return a 'N more Disting ed using 4 to ore observat	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea	strap methods. be reliable.	
481 482 483 484 485 485 486 487 488	Those methods will It is necessary to have 4 or However, results obtaine It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic	Il return a 'N more Disting ed using 4 to ore observat Relevant U	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis	
481 482 483 484 485 486 487 488 489	Those methods will It is necessary to have 4 or However, results obtaine It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	Il return a 'N more Disting ed using 4 to ore observat Relevant U	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Val	ue 0.85
481 482 483 484 485 485 486 487 488 489 490	Those methods will It is necessary to have 4 or However, results obtaine It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic	Il return a 'N more Disting ed using 4 to ore observat Relevant U	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis	ue 0.85
481 482 483 484 485 486 486 487 488 489 490 491	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or me Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	Il return a 'N more Disting ed using 4 to ore observat Relevant U	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve	ue 0.85
481 482 483 484 485 485 486 487 488 489 490 491 492	Those methods will It is necessary to have 4 or However, results obtaine It is recommended to have 10-15 or methods Normal Distribution Test Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	Il return a 'N more Distince ed using 4 to ore observat Relevant U 0.346 0.85	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve	ue 0.85
481 482 483 484 485 486 487 488 489 490 491 492 493	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or me Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL	Il return a 'N more Distince ed using 4 to ore observat Relevant U 0.346 0.85	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-U0	ue 0.85 I CL 3676
481 482 483 484 485 486 487 488 489 490 491 492 493 494	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	Il return a 'N more Distince ed using 4 to ore observation Relevant U 0.346 0.85	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Vali ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-U0 95% Chebyshev (MVUE) U0	ue 0.85 H CL 3676 CL 12.34
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or me Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	Il return a 'N more Distince ed using 4 to ore observat Relevant U 0.346 0.85 112.6	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-UC 95% Chebyshev (MVUE) UC 97.5% Chebyshev (MVUE) UC	ue 0.85 I CL 3676 CL 12.34 CL 16.5
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness)	Il return a 'N more Distince ed using 4 to ore observat Relevant U 0.346 0.85 112.6	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Vali ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-U0 95% Chebyshev (MVUE) U0	ue 0.85 I CL 3676 CL 12.34 CL 16.5
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 495 496	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or me Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	Il return a 'N more Distince ed using 4 to ore observat Relevant U 0.346 0.85 112.6	ct Values to c 9 distinct va tions for accu	compute boot lues may not irate and mea Lo Data not Lo	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-UC 95% Chebyshev (MVUE) UC 97.5% Chebyshev (MVUE) UC	ue 0.85 I CL 3676 CL 12.34 CL 16.5
481 482 483 484 485 486 487 488 489 490 491 491 492 493 494 495 495 496 497 498 499 500	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978)	II return a 'N more Disting ed using 4 to ore observat Relevant U 0.346 0.85 112.6 148.6 119.3	Ct Values to co	compute boot lues may not irate and mea Lo Data not Lo Assu	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-UC 95% Chebyshev (MVUE) UC 97.5% Chebyshev (MVUE) UC 99% Chebyshev (MVUE) UC	ue 0.85 I CL 3676 CL 12.34 CL 16.5 CL 24.68
481 482 483 484 485 486 487 488 489 490 491 492 493 494 493 494 495 496 497 498 499 500 501	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) Gamma Distribution Test k star (bias corrected)	Il return a 'N/ more Distince ed using 4 to ore observat Relevant U/ 0.346 0.85 112.6 148.6 119.3	Ct Values to co	compute boot lues may not irate and mea Lo Data not Lo Assu	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-UC 95% Chebyshev (MVUE) UC 97.5% Chebyshev (MVUE) UC	ue 0.85 I CL 3676 CL 12.34 CL 16.5 CL 24.68
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 495 496 497 498 499 500 501 501	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) K star (bias corrected) Theta Star	Il return a 'N more Distince ed using 4 to ore observat Relevant U 0.346 0.85 112.6 148.6 119.3 0.162 248.2	Ct Values to co	compute boot lues may not irate and mea Lo Data not Lo Assu	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-UC 95% Chebyshev (MVUE) UC 97.5% Chebyshev (MVUE) UC 99% Chebyshev (MVUE) UC	ue 0.85 I CL 3676 CL 12.34 CL 16.5 CL 24.68
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 495 496 497 498 499 500 501	Those methods will It is necessary to have 4 or However, results obtained It is recommended to have 10-15 or methods Normal Distribution Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) K star (bias corrected) Theta Star MLE of Mean	Il return a 'N/ more Distince ed using 4 to ore observation Relevant U/ 0.346 0.85 112.6 148.6 119.3 0.162 248.2 40.13	Ct Values to co	compute boot lues may not irate and mea Lo Data not Lo Assu	strap methods. be reliable. aningful bootstrap results. gnormal Distribution Test Shapiro Wilk Test Statis Shapiro Wilk Critical Valu ognormal at 5% Significance Leve ming Lognormal Distribution 95% H-UC 95% Chebyshev (MVUE) UC 97.5% Chebyshev (MVUE) UC 99% Chebyshev (MVUE) UC	ue 0.85 I CL 3676 CL 12.34 CL 16.5 CL 24.68

	А	В	С	D	E	F	G	Н		J	K	L
505					nu star							
506			Approximat	te Chi Square	e Value (.05)	0.555			Nonparame	tric Statistics	;	
507			Adjus	sted Level of	Significance	0.0278				95	% CLT UCL	105.9
508			Ac	djusted Chi S	quare Value	0.399				95% Ja	ckknife UCL	112.6
509									95%	Standard Bo	otstrap UCL	N/A
510			Anders	son-Darling T	est Statistic	3.327				95% Boo	tstrap-t UCL	N/A
511			Anderson-	Darling 5% C	ritical Value	0.881			g	5% Hall's Bo	otstrap UCL	N/A
512			Kolmogor	ov-Smirnov T	est Statistic	0.498			95%	Percentile Bo	otstrap UCL	N/A
512		K	olmogorov-S	mirnov 5% C	ritical Value	0.285				95% BCA Bo	otstrap UCL	N/A
513	Da		-	ed at 5% Sig				an, Sd) UCL	214.4			
514										ebyshev(Me	,	
515		As	suming Garr	nma Distribut	ion	1				ebyshev(Me	,	
516				pproximate G		257.2					,	
				% Adjusted G								
518 510				,								
519 520			Potential I	JCL to Use					Jse 99% Ch	ebyshev (Me	an, Sd) UCI	438
520										.,	, = =, 332	
521	Nr	ote: Suggesti	ions recerdir	ng the selecti	ion of a 95%	UCL are pre	ovided to he	 p the user to) select the	most approp	iate 95% LIG	
522			•	s are based u		-		-				
523				and Singh (2	-							'
524				unu omyn (2			, yn, ne ust	or may wall	to consult a			
525												
526	Dieldrin											
527												
528						0'	Ototiotic -					
529						General	STATISTICS		KI 1	• •f Di-ti - : 0		2
530			Numb	ber of Valid C	oservations	11			Numbe	r of Distinct C	oservations	2
531							[
532			Raw S	tatistics		0.0-			_og-transfor	med Statistic		
533					Minimum						of Log Data	
534					Maximum						of Log Data	
535						1.227					n of log Data	
536					Median					SE	of log Data	1.677
537						3.905						
538					rror of Mean							
539				Coefficient	of Variation	3.182						
540					Skewness	3.317						
541												·
542												
543				Wa	arning: The	re are only 2	Distinct Val	ues in this d	ata			
544			There a	re insufficien	nt Distinct Va	alues to perfe	orm some G	OF tests and	d bootstrap r	nethods.		
545				Those	methods wil	l return a 'N/	A' value on y	your output o	display!			
546												
547			lt is	s necessary t	o have 4 or	more Disting	t Values to	compute boo	otstrap meth	ods.		
548				However, res	sults obtaine	ed using 4 to	9 distinct va	alues may no	ot be reliable).		
549		lt	is recomme	nded to have	10-15 or me	ore observat	ions for accu	urate and me	eaningful bo	otstrap result	s.	
550												
551						Relevant U	CL Statistics	6				
552			Normal Dist	ribution Test					ognormal Di	stribution Te	st	
				hapiro Wilk T		0.345			-	hapiro Wilk 1		0.345
553				hapiro Wilk C						hapiro Wilk C		
554		Data not		5% Significan				Data not I		t 5% Significa		
555												
556		Δα	sumina Nor	mal Distributi	ion			٨٩٩	umina Loan	ormal Distrib	ution	
557		~~3			dent's-t UCL	3 361		667	anning Login		95% H-UCL	3 525
558		05%		sted for Skev		0.001			05%	Chebyshev (
559			• •		•	4 422					,	
560			95% Adjuste	ed-CLT UCL (unen-1995)	4.422			97.5%	Chebyshev (WVUE) UCL	1.169

	A	ВС	D	E	F	G	Н	I	J	K	L
561		95% Modified-t	UCL (Joh	nson-1978)	3.557			99% (Chebyshev (N	/IVUE) UCL	1.705
562											
563		Gamma Distribu			0.054			Data Dis			
564		k	k star (bias	s corrected)		D	ata do not fo	ollow a Disce	ernable Distri	bution (0.05)
565				Theta Star							
566		МГ		rd Deviation							
567		WILE (oi Stanuai	nu star							
568		Approximate C	hi Squara					Nonnaramet	ric Statistics		
569			•	Significance				Nonparamet		% CLT UCL	3 164
570				quare Value						ckknife UCL	N/A
571		7 (0)001			1.002			95%	Standard Boo		N/A
572		Anderson-	-Darling T	est Statistic	3.842					strap-t UCL	N/A
573		Anderson-Darl						9	5% Hall's Boo	•	N/A
574		Kolmogorov-S	-						Percentile Boo	•	N/A
575 576		Kolmogorov-Smirr							95% BCA Boo	•	N/A
577	Da	ata not Gamma Distributed a						95% Ch	ebyshev(Mea	an, Sd) UCL	6.359
578								97.5% Ch	ebyshev(Mea	an, Sd) UCL	8.579
579		Assuming Gamma	Distributi	ion				99% Ch	ebyshev(Mea	an, Sd) UCL	12.94
580		95% Appro	oximate G	iamma UCL	4.841						
581		95% A	djusted G	amma UCL	6.205						
582											
583		Potential UCL	to Use		I		l	Jse 99% Che	ebyshev (Mea	an, Sd) UCL	12.94
584											
585		ote: Suggestions regarding the			-						
586		These recommendations are		-				-	-	1 laci (2002)	
587		and Singh and	d Singh (2	003). For	additional in	sight, the use	r may want	to consult a	statistician.		
588											
589	0										
590	Copper										
591					General	Statistics					
592		Number	of Valid O	bservations	T			Number	of Distinct O	bservations	11
593											
594 595		Raw Statis	stics				L	.og-transforr	ned Statistics	3	
595 596				Minimum	2			•		of Log Data	0.693
590 597				Maximum	140				Maximum	of Log Data	4.942
598				Mean	43.09				Mean	of log Data	3.334
599				Median	34				SD	of log Data	1.152
600				SD	37.51						
601			Std. Er	ror of Mean	11.31						
602		С	oefficient	of Variation	0.871						
603				Skewness	1.801						
604											
605					Relevant U	ICL Statistics					
606		Normal Distribu			1		Lo	-	stribution Tes		
607		-		est Statistic					hapiro Wilk T		
608		•		ritical Value	0.85		D = 1 =		hapiro Wilk C		
609		Data not Normal at 5% S	Significan	ce Level			uata appear	Lognormal	at 5% Signifi	cance Level	
610		A	Distrik	<u></u>			▲ - ·		mod Distrik	tion	
611		Assuming Normal		on lent's-t UCL	63 50		ASSI	arning Logno	ormal Distribu	Jtion 95% H-UCL	101 1
612		95% UCLs (Adjusted			03.39			050/ /			
613		95% UCLs (Adjusted 95% Adjusted-C			68.26				Chebyshev (N Chebyshev (N	-	
614		95% Modified-t	•						Chebyshev (N	,	
615 616				1301-1370)	57.01			3370 (207.2
	1					1					

	A	В	C	D	E	F	G	Н		J	K	L
617			Gamma Dist	ribution Tes	t				Data Dis	tribution		
618				k star (bia	s corrected)	1.01	Data	appear Ga	mma Distribu	ited at 5% Si	gnificance l	Level
619					Theta Star	42.65	<u> </u>					
				Ν	ILE of Mean	43.09						
620			N/I		rd Deviation							
621			IVIL									
622					nu star							
623			Approximate		. ,				Nonparamet			
624			Adjust	ted Level of	Significance	0.0278				95	% CLT UCL	61.69
625			Adj	justed Chi S	quare Value	11.33				95% Jao	ckknife UCL	63.59
626									95%	Standard Boo	otstrap UCL	61.26
627			Anders	on-Darling T	Fest Statistic	0.31				95% Boot	strap-t UCL	74.57
			Anderson-D	Darling 5% C	Critical Value	0.746			9	5% Hall's Bo	otstrap UCL	152.8
628					Fest Statistic					Percentile Boo	•	
629		K	olmogorov-Sr							95% BCA Bo	•	
630	Det										•	
631	Data	a appear Ga	mma Distribu	ted at 5% 5	ignificance i	_evei				ebyshev(Mea	,	
632										ebyshev(Mea	,	
633		As	suming Gam						99% Ch	ebyshev(Mea	in, Sd) UCL	155.6
634			95% Ap	oproximate C	Gamma UCL	76.57						
635			95%	6 Adjusted C	Gamma UCL	84.49						
636												
637			Potential U	ICL to Use		I			Use 95% A	oproximate G	iamma UCL	76.57
638	N	te: Suggesti	ions regardin	a the select	ion of a 95%	UCL are pro	ovided to hel	n the user t	o select the r	nost annronr	iate 95% LIC	
639			nmendations			-		-				
640		These recor										,
641			and Singh a	anu singn (z	2003). FOR		signi, the use	er may want	to consult a	stausucian.		
642												
643												
644	Lead											
645												
646						General	Statistics					
647			Numb	er of Valid C	bservations	11			Number	of Distinct O	bservations	11
648												
			Raw Sta	atistics					Log-transform	ned Statistics	3	
649					Minimum	11					of Log Data	2 398
650					Maximum						of Log Data	
651						649.9					of log Data	
652											-	
653					Median					SD	of log Data	1.722
654						820						
655					rror of Mean							
656				Coefficient	of Variation	1.262						
657					Skewness	1.354						
658						ı						•
659						Relevant U	CL Statistics					
			Normal Distr	ibution Test	t			L	.ognormal Di	stribution Tes	st	
660					Fest Statistic	0.731			-	hapiro Wilk T		0.919
661				•	Critical Value					napiro Wilk C		
662		Data				0.00		Doto on		•		
663		Data not	t Normal at 59	70 SIGNITICAR	ICE LEVEI			Data appea	r Lognormal	aı ə% Signifi		1
664					-							
665		As	suming Norm					Ass	uming Logno			
666					dent's-t UCL	1098					95% H-UCL	
667		95%	UCLs (Adjus	sted for Ske	wness)				95% (Chebyshev (N	JVUE) UCL	2879
668			95% Adjusted	d-CLT UCL ((Chen-1995)	1164			97.5% (Chebyshev (N	IVUE) UCL	3761
			95% Modifie	d-t UCL (Jol	nnson-1978)	1115			99% (Chebyshev (N	IVUE) UCL	5494
669 670				1	1					, - (-	,	I
670			Gamma Dist	ribution Tea	t				Data Die	tribution		
671					-	0.50	Data				anificanas '	aval
672				к star (bia	is corrected)	0.52	Data	appear Ga	mma Distribu	ned at 5% Si	gnificance L	Level

	А	В	С	D	E	F	G	Н	I	J	K	L
673					Theta Star							
674			•		ILE of Mean							
675			М	LE of Standa								
676			.	01:0	nu star				N			
677				e Chi Square					Nonparame	tric Statistics		1057
678				sted Level of	-						6% CLT UCL	
679			AC	ljusted Chi S	quare Value	4.187			050/	95% Ja Standard Bo	ckknife UCL	
680			Andor	son-Darling T	Fact Statistic	0.415			95%		tstrap-t UCL	
681				Darling 5% C					C	95 % B00		
682				ov-Smirnov T						Percentile Bo	•	
683		ĸ	Colmogorov-S							95% BCA Bo	•	
684	Dat	a appear Ga	-							ebyshev(Me	•	
685	Dat				igninounce i					ebyshev(Me	-	
686		As	suming Gam	nma Distribut	tion					ebyshev(Me	. ,	
687 688		,	-	pproximate C		1529						
688				% Adjusted G								
689 690				· .,								
			Potential U	JCL to Use					Use 95% A	pproximate C	amma UCL	1529
691 692										· · ·		
693	N	ote: Suggest	ions regardir	ng the select	ion of a 95%	UCL are pro	ovided to he	lp the user to	o select the I	most appropi	riate 95% U(CL.
694		These recor	mmendations	s are based u	upon the res	ults of the si	mulation stu	dies summa	rized in Sing	h, Singh, and	d laci (2002))
695			and Singh	and Singh (2	2003). For a	additional ins	sight, the us	er may want	to consult a	statistician.		
696							-	-				
697												
698	Zinc											
699												
700						General	Statistics					
701			Num	per of Valid C	bservations	11			Numbe	r of Distinct C	bservations	11
702						1						
703			Raw S	tatistics				l	og-transfor	med Statistic		
704					Minimum						of Log Data	
705					Maximum						of Log Data	
706					Mean						n of log Data	
707					Median					SE	D of log Data	0.908
708				-		196.7						
709					rror of Mean							
710				Coefficient	of Variation							
711					Skewness	1.962						
712						Dolovert 14	Cl Ctotiotic-					
713			Normal Dist	ribution Test	•	Relevant U	วะ งเสแรนCS		ognormal D	stribution Te	et	
714				hapiro Wilk T		0 725		L	-	Shapiro Wilk T		0 934
715				hapiro Wilk C						hapiro Wilk C		
716		Data no	t Normal at 5	•		0.00		Data annea		at 5% Signifi		
717		Data no							Lognormal	di 070 Olgini		•
718		۵۵	suming Nori	mal Distribut	ion			٨٩٩	umina Loan	ormal Distrib	ution	
719		, 10			dent's-t UCL	288.5		/ 63			95% H-UCL	406.5
720		95%	UCLs (Adju						95%	Chebyshev (I		
721 722			95% Adjuste		=	316				Chebyshev (I	,	
				ed-t UCL (Joh						Chebyshev (I	,	
723 724				(-7					, - (,	
724			Gamma Dist	tribution Tes	t				Data Di	stribution		
725			_		s corrected)	1.043	Data	a appear Ga		uted at 5% S	ignificance l	_evel
720				`	Theta Star							
727				N	ILE of Mean							
120						1						

	А	В	С	D	E	F	G	Н	I	J	K	L			
729			М	LE of Standa	ard Deviation	177.2									
730					nu star	22.94									
731			Approximat	te Chi Squar	e Value (.05)	13.05			Nonparame	tric Statistic	S				
732			Adjus	sted Level of	Significance	0.0278				9	5% CLT UCL	278.6			
733			Ac	djusted Chi S	Square Value	11.85				95% Ja	ackknife UCL	288.5			
734									95%	Standard B	ootstrap UCL	274.8			
735			Anders	son-Darling	Test Statistic	0.574				95% Boo	otstrap-t UCL	502.5			
736			Anderson-	Darling 5% (Critical Value	0.745			ç	95% Hall's B	ootstrap UCL	784.7			
737			Kolmogor	ov-Smirnov	Test Statistic	0.196			95%	Percentile B	ootstrap UCL	280			
738		K	olmogorov-S	Smirnov 5% C	Critical Value	0.261		95% BCA Bootstrap UCL							
739	Data	appear Gai	mma Distrib	uted at 5% S	Significance	evel		95% Chebyshev(Mean, Sd) UCL							
740									97.5% Ch	nebyshev(Me	ean, Sd) UCL	551.4			
741		As	suming Garr	nma Distribu	tion			771.1							
742			95% A	pproximate (Gamma UCL	318.3									
743			95	% Adjusted (Gamma UCL	350.5									
744															
745			Potential l	JCL to Use					Use 95% A	pproximate	Gamma UCL	318.3			
746															
747	No	te: Suggesti	ions regardir	ng the select	tion of a 95%	UCL are p	provided to hel	p the user to	o select the	most approp	priate 95% U	CL.			
748	•	These recon	nmendations	s are based	upon the res	ults of the	simulation stud	dies summa	rized in Sing	gh, Singh, ar	nd laci (2002)			
749			and Singh	and Singh (2003). For	additional i	nsight, the use	er may want	to consult a	statistician.					
750															